initial code for dumping imessages in a reasonable format

This commit is contained in:
Jeffrey Paul 2014-02-09 00:30:49 +01:00
parent c0021efb13
commit 9dd7628f04
157 changed files with 24178 additions and 0 deletions

1
dump-imessages/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*.tmp

7
dump-imessages/Makefile Normal file
View File

@ -0,0 +1,7 @@
default: dump
dump:
./dump.sh
clean:
rm -rf *.tmp

5
dump-imessages/README.md Normal file
View File

@ -0,0 +1,5 @@
# notes
* iphone-dataprotection cloned from
https://code.google.com/p/iphone-dataprotection/ on 20140207

39
dump-imessages/dump.sh Executable file
View File

@ -0,0 +1,39 @@
#!/bin/bash
BACKUPS=""
for B in ls ~/Library/Application\ Support/MobileSync/Backup/* ; do
BACKUPS+=" $(basename "$B")"
done
if [ -r ${HOME}/Documents/Secure/iphone-backup-password.sh ]; then
source "${HOME}/Documents/Secure/iphone-backup-password.sh"
fi
# expecting $IPHONE_BACKUP_PASSWORD to be set now. set it in your
# environment if not, or put a script exporting it at that path above
echo $BACKUPS
WORKDIR="$TMPDIR/iphone-sms-dump.workd"
if [ ! -d "$WORKDIR" ]; then
mkdir -p "$WORKDIR"
fi
for BID in $BACKUPS ; do
if [ ! -r $WORKDIR/sms-$BID.db ]; then
TD="$(mktemp -d -t bdir)/out"
echo -e "y\n$IPHONE_BACKUP_PASSWORD" |
python ./iphone-dataprotection/python_scripts/backup_tool.py \
"${HOME}/Library/Application Support/MobileSync/Backup/$BID" \
"$TD" 2>&1 > /dev/null # hush
echo "extracted to $TD"
mv "$TD/HomeDomain/Library/SMS/sms.db" ./sms-$BID.db
mv "$TD/MediaDomain/Library/SMS/Attachments" ./Attachments-$BID.d
rm -rf "$TD"
fi
done
for BID in $BACKUPS ; do
# now we process them...
done

View File

@ -0,0 +1,8 @@
# use glob syntax.
syntax: glob
*.o
*.pyc
*.dmg
*.ipsw

View File

@ -0,0 +1,7 @@
comex
chronic dev team
idroid/openiboot team
iphone dev team
Jonathan Zdziarski
msftguy
planetbeing

View File

@ -0,0 +1 @@
See http://code.google.com/p/iphone-dataprotection/wiki/README

View File

@ -0,0 +1,81 @@
#!/bin/bash
#set +e
#set -o errexit
if [ $# -lt 4 ]
then
echo "Syntax: $0 IPSW RAMDISK KEY IV CUSTOMRAMDISK"
echo "python_scripts/kernel_patcher.py can generate a shell script with the correct parameters"
exit
fi
if [ ! -f ramdisk_tools/restored_external ]
then
echo "ramdisk_tools/restored_external not found, check compilation output for errors"
exit -1
fi
IPSW=$1
RAMDISK=$2
KEY=$3
IV=$4
CUSTOMRAMDISK=$5
if [ "$CUSTOMRAMDISK" == "" ]; then
CUSTOMRAMDISK="myramdisk.dmg"
fi
IMG3FS="./img3fs/img3fs"
IMG3MNT="/tmp/img3"
if [ ! -f $IMG3FS ]; then
echo "img3fs is missing, install osxfuse and run make -C img3fs/"
exit -1
fi
if [ ! -f ssh.tar.gz ]; then
echo "Downloading ssh.tar.gz from googlecode"
curl -O http://iphone-dataprotection.googlecode.com/files/ssh.tar.gz
fi
unzip $IPSW $RAMDISK
if [ -d "/Volumes/ramdisk" ]; then
hdiutil eject /Volumes/ramdisk
umount $IMG3MNT
fi
mkdir -p $IMG3MNT
$IMG3FS -key $KEY -iv $IV $IMG3MNT $RAMDISK
hdiutil attach -owners off $IMG3MNT/DATA.dmg
#remove baseband files to free space
rm -rf /Volumes/ramdisk/usr/local/standalone/firmware/*
rm -rf /Volumes/ramdisk/usr/share/progressui/
#dont replace existing files, replacing launchctl on armv6 ramdisks makes it fail somehow
tar -C /Volumes/ramdisk/ -xzkP < ssh.tar.gz
rm /Volumes/ramdisk/bin/vdir
rm /Volumes/ramdisk/bin/egrep
rm /Volumes/ramdisk/bin/grep
#rm /Volumes/ramdisk/usr/local/bin/restored_external
cp ramdisk_tools/restored_external /Volumes/ramdisk/usr/local/bin
cp ramdisk_tools/bruteforce ramdisk_tools/device_infos /Volumes/ramdisk/var/root
cp ramdisk_tools/scripts/* /Volumes/ramdisk/var/root
cp ramdisk_tools/ioflashstoragekit /Volumes/ramdisk/var/root
#if present, copy ssh public key to ramdisk
if [ -f ~/.ssh/id_rsa.pub ]; then
mkdir /Volumes/ramdisk/var/root/.ssh
cp ~/.ssh/id_rsa.pub /Volumes/ramdisk/var/root/.ssh/authorized_keys
fi
hdiutil eject /Volumes/ramdisk
umount $IMG3MNT
mv $RAMDISK $CUSTOMRAMDISK
#echo "$CUSTOMRAMDISK created"

View File

@ -0,0 +1,89 @@
#!/bin/bash
if [ ! $(uname) == "Darwin" ]
then
echo "Script for Mac OS X only"
exit
fi
if [ $# -lt 1 ]
then
echo "Syntax: $0 DECRYPTED_RAMDISK_DMG"
exit
fi
if [ ! -f ssh.tar.gz ]
then
echo "Downloading ssh.tar.gz from googlecode"
curl -O http://iphone-dataprotection.googlecode.com/files/ssh.tar.gz
fi
if [ ! -f libncurses.5.dylib ]
then
echo "Downloading libncurses.5.dylib from googlecode"
curl -O http://iphone-dataprotection.googlecode.com/files/libncurses.5.dylib
fi
echo "Rebuilding ramdisk_tools"
./build_tools.sh
#compiling in a vmware shared folder can produce binaries filled with zeroes !
if [ ! -f ramdisk_tools/restored_external ] || [ "$(file -b ramdisk_tools/restored_external)" == "data" ]
then
echo "ramdisk_tools/restored_external not found or invalid, check compilation output for errors"
exit -1
fi
RAMDISK=$1
RD_SIZE=$(du -h $RAMDISK | cut -f 1)
if [ ! $RD_SIZE == "20M" ]
then
echo "resizing ramdisk..."
echo "hdiutil will segfault if ramdisk was already resized, thats ok"
hdiutil resize -size 20M $RAMDISK
fi
if [ -d /Volumes/ramdisk ]
then
echo "Unmount /Volumes/ramdisk then try again"
exit -1
fi
echo "Attaching ramdisk"
hdiutil attach $RAMDISK
rm -rf /Volumes/ramdisk/usr/local/standalone/firmware/*
rm -rf /Volumes/ramdisk/usr/share/progressui/
if [ ! -f /Volumes/ramdisk/sbin/sshd ]
then
echo "Unpacking ssh.tar.gz on ramdisk..."
tar -C /Volumes/ramdisk/ -xzkP < ssh.tar.gz
echo "^^ This tar error message is okay"
fi
if [ ! -f /Volumes/ramdisk/usr/lib/libncurses.5.4.dylib ]
then
echo "Adding libncurses..."
cp libncurses.5.dylib /Volumes/ramdisk/usr/lib/libncurses.5.4.dylib
fi
echo "Adding/updating ramdisk_tools binaries on ramdisk..."
cp ramdisk_tools/restored_external /Volumes/ramdisk/usr/local/bin/
cp ramdisk_tools/bruteforce ramdisk_tools/device_infos /Volumes/ramdisk/var/root
cp ramdisk_tools/scripts/* /Volumes/ramdisk/var/root
ls -laht /Volumes/ramdisk/usr/local/bin/
#if present, copy ssh public key to ramdisk
if [ -f ~/.ssh/id_rsa.pub ] && [ ! -d /Volumes/ramdisk/var/root/.ssh ]
then
mkdir /Volumes/ramdisk/var/root/.ssh
cp ~/.ssh/id_rsa.pub /Volumes/ramdisk/var/root/.ssh/authorized_keys
chmod 0600 /Volumes/ramdisk/var/root/.ssh/authorized_keys
fi
hdiutil eject /Volumes/ramdisk

View File

@ -0,0 +1,53 @@
#!/bin/bash
if [ ! $(uname) == "Darwin" ]
then
echo "Script for Mac OS X only"
exit
fi
for VER in 5.0 5.1 6.0 6.1 7.0
do
if [ -d "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS$VER.sdk/" ];
then
SDKVER=$VER
SDKPATH="/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS$VER.sdk/"
echo "Found iOS SDK at $SDKPATH"
break
fi
done
if [ "$SDKVER" == "" ]; then
echo "iOS SDK not found"
exit -1
fi
if [ ! -f "$SDKPATH/System/Library/Frameworks/IOKit.framework/Headers/IOKitLib.h" ]; then
echo "IOKit headers missing"
$IOKIT_HDR_109="/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/System/Library/Frameworks/IOKit.framework/Headers"
if [ -d $IOKIT_HDR_109 ]; then
echo "Symlinking headers"
sudo ln -s $IOKIT_HDR_109 "$SDKPATH/System/Library/Frameworks/IOKit.framework/Headers"
sudo ln -s "/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/usr/include/libkern/OSTypes.h" "$SDKPATH/usr/include/libkern/OSTypes.h"
fi
fi
if [ ! -f "$SDKPATH/System/Library/Frameworks/IOKit.framework/IOKit" ]; then
echo "IOKit binary missing"
if [ -f "$SDKPATH/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit" ]; then
echo "Creating IOKit symlink for iOS 7.0 SDK"
sudo ln -s "$SDKPATH/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit" "$SDKPATH/System/Library/Frameworks/IOKit.framework/IOKit"
fi
fi
if [ -f "$SDKPATH/System/Library/Frameworks/IOKit.framework/Headers/IOKitLib.h" ]; then
if [ -f "$SDKPATH/System/Library/Frameworks/IOKit.framework/IOKit" ]; then
export SDKVER
make -C ramdisk_tools clean
make -C ramdisk_tools
fi
fi

View File

@ -0,0 +1,19 @@
#!/bin/sh
SSHOPTS="-p 2222 -oStrictHostKeyChecking=no -oUserKnownHostsFile=/dev/null"
UDID=`ssh $SSHOPTS root@localhost "./device_infos udid"`
if [ "$UDID" == "" ]; then
exit
fi
echo "Device UDID : $UDID"
mkdir -p $UDID
DATE=`date +"%Y%m%d-%H%M"`
OUT=$UDID/data_$DATE.dmg
echo "Dumping data partition in $OUT ..."
ssh $SSHOPTS root@localhost "dd if=/dev/rdisk0s2s1 bs=8192 || dd if=/dev/rdisk0s1s2 bs=8192" > $OUT

View File

@ -0,0 +1,92 @@
INSTRUCTIONS FOR BUILDING XPWN
------------------------------
These are very basic instructions on how to build xpwn related projects, they
are tailored to Debian based systems. They are not meant to be a substitute
for experience in programming in GNU/Linux environments, but it should be a
good starting point.
1. Install a basic build environment (compilers, etc.):
sudo apt-get install build-essential
2. Install some prerequisites libraries required by xpwn:
sudo apt-get install libcrypt-dev libz-dev libbz2-dev3 libusb-dev
3. Install cmake. It is recommended you download and build it from the
official cmake website, since versions >= 2.6.0 are recommended.
wget http://www.cmake.org/files/v2.6/cmake-2.6.2.tar.gz
tar zxvf cmake-2.6.2.tar.gz
cd cmake-2.6.2
./configure
make
sudo make install
Now you are ready to build xpwn. It is highly recommended that you build
out-of-source (that is, the build products are not placed into the same
folders as the sources). This is much neater and cleaning up is as simple as
deleting the build products folder.
Assuming xpwn sources are in ~/xpwn:
4. Create a build folder
cd ~
mkdir build
cd build
5. Create Makefiles
cmake ~/xpwn
6. Build
make
7. Package
make package
BUILDING USEFUL LIBRARIES
-------------------------
These command-lines can be substituted in for step 6. The products are in the
subfolders (make package will not include them).
xpwn library (for IPSW generation)
make libXPwn.a
Windows pwnmetheus library (for QuickPwn)
make libpwnmetheus.dll
HELPFUL MAKEFILE GENERATION COMMAND-LINES
-----------------------------------------
These command-lines can be substituted in for step 5.
Add debugging symbols:
cmake ~/xpwn -DCMAKE_C_FLAGS=-g
Try to only use static libraries:
cmake ~/xpwn -DBUILD_STATIC=YES
CROSS-COMPILING
---------------
This is a complex and advanced topic, but it is possible with the appropriate
CMake toolchain files and properly configured build environment. I have
crossbuilt Windows, OS X, Linux x86, Linux x64, and iPhone binaries from one
Ubuntu machine. The source trees are properly configured for this task.
MORE HELP
---------
Consult the CMake documentation and wiki and look in the CMakeLists.txt files
for hints on how things are supposed to work.

View File

@ -0,0 +1,29 @@
cmake_minimum_required(VERSION 2.6)
set(CMAKE_LEGACY_CYGWIN_WIN32 0)
project (XPwn)
# We want win32 executables to build staticly by default, since it's more difficult to keep the shared libraries straight on Windows
IF(WIN32)
SET(BUILD_STATIC ON CACHE BOOL "Force compilation with static libraries")
ELSE(WIN32)
SET(BUILD_STATIC OFF CACHE BOOL "Force compilation with static libraries")
ENDIF(WIN32)
IF(BUILD_STATIC)
SET(CMAKE_FIND_LIBRARY_SUFFIXES ".a")
ENDIF(BUILD_STATIC)
include_directories (${PROJECT_SOURCE_DIR}/includes)
add_subdirectory (common)
add_subdirectory (hfs)
add_subdirectory (emf)
IF(WIN32 OR APPLE)
SET(CPACK_GENERATOR "ZIP")
ELSE(WIN32 OR APPLE)
SET(CPACK_GENERATOR "TBZ2")
ENDIF(WIN32 OR APPLE)
INCLUDE(CPack)

View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@ -0,0 +1,13 @@
DEPRECATED: use the python version instead
Decrypts files data forks in raw iOS 4 disk images.
Reads encryption keys from plist file named after the volume ID.
The plist file must have at least the EMF and DKey fields set.
For now the tool decrypts the data forks but does not mark the files as
"decrypted" : running it twice on the same image will produce garbage.
Interrupting the process will also leave the image "half decrypted".
Uses planetbeing/dev team HFS implementation
https://github.com/planetbeing/xpwn
Only builds on Mac OS X, requires CoreFoundation for plist access.

View File

@ -0,0 +1,2 @@
add_library(common abstractfile.c base64.c)

View File

@ -0,0 +1,311 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <stdint.h>
#include "abstractfile.h"
#include "common.h"
size_t freadWrapper(AbstractFile* file, void* data, size_t len) {
return fread(data, 1, len, (FILE*) (file->data));
}
size_t fwriteWrapper(AbstractFile* file, const void* data, size_t len) {
return fwrite(data, 1, len, (FILE*) (file->data));
}
int fseekWrapper(AbstractFile* file, off_t offset) {
return fseeko((FILE*) (file->data), offset, SEEK_SET);
}
off_t ftellWrapper(AbstractFile* file) {
return ftello((FILE*) (file->data));
}
void fcloseWrapper(AbstractFile* file) {
fclose((FILE*) (file->data));
free(file);
}
off_t fileGetLength(AbstractFile* file) {
off_t length;
off_t pos;
pos = ftello((FILE*) (file->data));
fseeko((FILE*) (file->data), 0, SEEK_END);
length = ftello((FILE*) (file->data));
fseeko((FILE*) (file->data), pos, SEEK_SET);
return length;
}
AbstractFile* createAbstractFileFromFile(FILE* file) {
AbstractFile* toReturn;
if(file == NULL) {
return NULL;
}
toReturn = (AbstractFile*) malloc(sizeof(AbstractFile));
toReturn->data = file;
toReturn->read = freadWrapper;
toReturn->write = fwriteWrapper;
toReturn->seek = fseekWrapper;
toReturn->tell = ftellWrapper;
toReturn->getLength = fileGetLength;
toReturn->close = fcloseWrapper;
toReturn->type = AbstractFileTypeFile;
return toReturn;
}
size_t dummyRead(AbstractFile* file, void* data, size_t len) {
return 0;
}
size_t dummyWrite(AbstractFile* file, const void* data, size_t len) {
*((off_t*) (file->data)) += len;
return len;
}
int dummySeek(AbstractFile* file, off_t offset) {
*((off_t*) (file->data)) = offset;
return 0;
}
off_t dummyTell(AbstractFile* file) {
return *((off_t*) (file->data));
}
void dummyClose(AbstractFile* file) {
free(file);
}
AbstractFile* createAbstractFileFromDummy() {
AbstractFile* toReturn;
toReturn = (AbstractFile*) malloc(sizeof(AbstractFile));
toReturn->data = NULL;
toReturn->read = dummyRead;
toReturn->write = dummyWrite;
toReturn->seek = dummySeek;
toReturn->tell = dummyTell;
toReturn->getLength = NULL;
toReturn->close = dummyClose;
toReturn->type = AbstractFileTypeDummy;
return toReturn;
}
size_t memRead(AbstractFile* file, void* data, size_t len) {
MemWrapperInfo* info = (MemWrapperInfo*) (file->data);
if(info->bufferSize < (info->offset + len)) {
len = info->bufferSize - info->offset;
}
memcpy(data, (void*)((uint8_t*)(*(info->buffer)) + (uint32_t)info->offset), len);
info->offset += (size_t)len;
return len;
}
size_t memWrite(AbstractFile* file, const void* data, size_t len) {
MemWrapperInfo* info = (MemWrapperInfo*) (file->data);
while((info->offset + (size_t)len) > info->bufferSize) {
info->bufferSize <<= 1;
*(info->buffer) = realloc(*(info->buffer), info->bufferSize);
}
memcpy((void*)((uint8_t*)(*(info->buffer)) + (uint32_t)info->offset), data, len);
info->offset += (size_t)len;
return len;
}
int memSeek(AbstractFile* file, off_t offset) {
MemWrapperInfo* info = (MemWrapperInfo*) (file->data);
info->offset = (size_t)offset;
return 0;
}
off_t memTell(AbstractFile* file) {
MemWrapperInfo* info = (MemWrapperInfo*) (file->data);
return (off_t)info->offset;
}
off_t memGetLength(AbstractFile* file) {
MemWrapperInfo* info = (MemWrapperInfo*) (file->data);
return info->bufferSize;
}
void memClose(AbstractFile* file) {
free(file->data);
free(file);
}
AbstractFile* createAbstractFileFromMemory(void** buffer, size_t size) {
MemWrapperInfo* info;
AbstractFile* toReturn;
toReturn = (AbstractFile*) malloc(sizeof(AbstractFile));
info = (MemWrapperInfo*) malloc(sizeof(MemWrapperInfo));
info->offset = 0;
info->buffer = buffer;
info->bufferSize = size;
toReturn->data = info;
toReturn->read = memRead;
toReturn->write = memWrite;
toReturn->seek = memSeek;
toReturn->tell = memTell;
toReturn->getLength = memGetLength;
toReturn->close = memClose;
toReturn->type = AbstractFileTypeMem;
return toReturn;
}
void abstractFilePrint(AbstractFile* file, const char* format, ...) {
va_list args;
char buffer[1024];
size_t length;
buffer[0] = '\0';
va_start(args, format);
length = vsprintf(buffer, format, args);
va_end(args);
ASSERT(file->write(file, buffer, length) == length, "fwrite");
}
int absFileRead(io_func* io, off_t location, size_t size, void *buffer) {
AbstractFile* file;
file = (AbstractFile*) io->data;
file->seek(file, location);
if(file->read(file, buffer, size) == size) {
return TRUE;
} else {
return FALSE;
}
}
int absFileWrite(io_func* io, off_t location, size_t size, void *buffer) {
AbstractFile* file;
file = (AbstractFile*) io->data;
file->seek(file, location);
if(file->write(file, buffer, size) == size) {
return TRUE;
} else {
return FALSE;
}
}
void closeAbsFile(io_func* io) {
AbstractFile* file;
file = (AbstractFile*) io->data;
file->close(file);
free(io);
}
io_func* IOFuncFromAbstractFile(AbstractFile* file) {
io_func* io;
io = (io_func*) malloc(sizeof(io_func));
io->data = file;
io->read = &absFileRead;
io->write = &absFileWrite;
io->close = &closeAbsFile;
return io;
}
size_t memFileRead(AbstractFile* file, void* data, size_t len) {
MemFileWrapperInfo* info = (MemFileWrapperInfo*) (file->data);
memcpy(data, (void*)((uint8_t*)(*(info->buffer)) + (uint32_t)info->offset), len);
info->offset += (size_t)len;
return len;
}
size_t memFileWrite(AbstractFile* file, const void* data, size_t len) {
MemFileWrapperInfo* info = (MemFileWrapperInfo*) (file->data);
while((info->offset + (size_t)len) > info->actualBufferSize) {
info->actualBufferSize <<= 1;
*(info->buffer) = realloc(*(info->buffer), info->actualBufferSize);
}
if((info->offset + (size_t)len) > (*(info->bufferSize))) {
memset(((uint8_t*)(*(info->buffer))) + *(info->bufferSize), 0, (info->offset + (size_t)len) - *(info->bufferSize));
*(info->bufferSize) = info->offset + (size_t)len;
}
memcpy((void*)((uint8_t*)(*(info->buffer)) + (uint32_t)info->offset), data, len);
info->offset += (size_t)len;
return len;
}
int memFileSeek(AbstractFile* file, off_t offset) {
MemFileWrapperInfo* info = (MemFileWrapperInfo*) (file->data);
info->offset = (size_t)offset;
return 0;
}
off_t memFileTell(AbstractFile* file) {
MemFileWrapperInfo* info = (MemFileWrapperInfo*) (file->data);
return (off_t)info->offset;
}
off_t memFileGetLength(AbstractFile* file) {
MemFileWrapperInfo* info = (MemFileWrapperInfo*) (file->data);
return *(info->bufferSize);
}
void memFileClose(AbstractFile* file) {
free(file->data);
free(file);
}
AbstractFile* createAbstractFileFromMemoryFile(void** buffer, size_t* size) {
MemFileWrapperInfo* info;
AbstractFile* toReturn;
toReturn = (AbstractFile*) malloc(sizeof(AbstractFile));
info = (MemFileWrapperInfo*) malloc(sizeof(MemFileWrapperInfo));
info->offset = 0;
info->buffer = buffer;
info->bufferSize = size;
info->actualBufferSize = (1024 < (*size)) ? (*size) : 1024;
if(info->actualBufferSize != *(info->bufferSize)) {
*(info->buffer) = realloc(*(info->buffer), info->actualBufferSize);
}
toReturn->data = info;
toReturn->read = memFileRead;
toReturn->write = memFileWrite;
toReturn->seek = memFileSeek;
toReturn->tell = memFileTell;
toReturn->getLength = memFileGetLength;
toReturn->close = memFileClose;
toReturn->type = AbstractFileTypeMemFile;
return toReturn;
}
AbstractFile* createAbstractFileFromMemoryFileBuffer(void** buffer, size_t* size, size_t actualBufferSize) {
MemFileWrapperInfo* info;
AbstractFile* toReturn;
toReturn = (AbstractFile*) malloc(sizeof(AbstractFile));
info = (MemFileWrapperInfo*) malloc(sizeof(MemFileWrapperInfo));
info->offset = 0;
info->buffer = buffer;
info->bufferSize = size;
info->actualBufferSize = actualBufferSize;
toReturn->data = info;
toReturn->read = memFileRead;
toReturn->write = memFileWrite;
toReturn->seek = memFileSeek;
toReturn->tell = memFileTell;
toReturn->getLength = memFileGetLength;
toReturn->close = memFileClose;
toReturn->type = AbstractFileTypeMemFile;
return toReturn;
}

View File

@ -0,0 +1,183 @@
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <dmg/dmg.h>
unsigned char* decodeBase64(char* toDecode, size_t* dataLength) {
uint8_t buffer[4];
uint8_t charsInBuffer;
unsigned char* curChar;
unsigned char* decodeBuffer;
unsigned int decodeLoc;
unsigned int decodeBufferSize;
uint8_t bytesToDrop;
curChar = (unsigned char*) toDecode;
charsInBuffer = 0;
decodeBufferSize = 100;
decodeLoc = 0;
decodeBuffer = (unsigned char*) malloc(decodeBufferSize);
bytesToDrop = 0;
while((*curChar) != '\0') {
if((*curChar) >= 'A' && (*curChar) <= 'Z') {
buffer[charsInBuffer] = (*curChar) - 'A';
charsInBuffer++;
}
if((*curChar) >= 'a' && (*curChar) <= 'z') {
buffer[charsInBuffer] = ((*curChar) - 'a') + ('Z' - 'A' + 1);
charsInBuffer++;
}
if((*curChar) >= '0' && (*curChar) <= '9') {
buffer[charsInBuffer] = ((*curChar) - '0') + ('Z' - 'A' + 1) + ('z' - 'a' + 1);
charsInBuffer++;
}
if((*curChar) == '+') {
buffer[charsInBuffer] = ('Z' - 'A' + 1) + ('z' - 'a' + 1) + ('9' - '0' + 1);
charsInBuffer++;
}
if((*curChar) == '/') {
buffer[charsInBuffer] = ('Z' - 'A' + 1) + ('z' - 'a' + 1) + ('9' - '0' + 1) + 1;
charsInBuffer++;
}
if((*curChar) == '=') {
bytesToDrop++;
}
if(charsInBuffer == 4) {
charsInBuffer = 0;
if((decodeLoc + 3) >= decodeBufferSize) {
decodeBufferSize <<= 1;
decodeBuffer = (unsigned char*) realloc(decodeBuffer, decodeBufferSize);
}
decodeBuffer[decodeLoc] = ((buffer[0] << 2) & 0xFC) + ((buffer[1] >> 4) & 0x3F);
decodeBuffer[decodeLoc + 1] = ((buffer[1] << 4) & 0xF0) + ((buffer[2] >> 2) & 0x0F);
decodeBuffer[decodeLoc + 2] = ((buffer[2] << 6) & 0xC0) + (buffer[3] & 0x3F);
decodeLoc += 3;
buffer[0] = 0;
buffer[1] = 0;
buffer[2] = 0;
buffer[3] = 0;
}
curChar++;
}
if(bytesToDrop != 0) {
if((decodeLoc + 3) >= decodeBufferSize) {
decodeBufferSize <<= 1;
decodeBuffer = (unsigned char*) realloc(decodeBuffer, decodeBufferSize);
}
decodeBuffer[decodeLoc] = ((buffer[0] << 2) & 0xFC) | ((buffer[1] >> 4) & 0x3F);
if(bytesToDrop <= 2)
decodeBuffer[decodeLoc + 1] = ((buffer[1] << 4) & 0xF0) | ((buffer[2] >> 2) & 0x0F);
if(bytesToDrop <= 1)
decodeBuffer[decodeLoc + 2] = ((buffer[2] << 6) & 0xC0) | (buffer[3] & 0x3F);
*dataLength = decodeLoc + 3 - bytesToDrop;
} else {
*dataLength = decodeLoc;
}
return decodeBuffer;
}
void writeBase64(AbstractFile* file, unsigned char* data, size_t dataLength, int tabLength, int width) {
char* buffer;
buffer = convertBase64(data, dataLength, tabLength, width);
file->write(file, buffer, strlen(buffer));
free(buffer);
}
#define CHECK_BUFFER_SIZE() \
if(pos == bufferSize) { \
bufferSize <<= 1; \
buffer = (unsigned char*) realloc(buffer, bufferSize); \
}
#define CHECK_LINE_END_STRING() \
CHECK_BUFFER_SIZE() \
if(width == lineLength) { \
buffer[pos++] = '\n'; \
CHECK_BUFFER_SIZE() \
for(j = 0; j < tabLength; j++) { \
buffer[pos++] = '\t'; \
CHECK_BUFFER_SIZE() \
} \
lineLength = 0; \
} else { \
lineLength++; \
}
char* convertBase64(unsigned char* data, size_t dataLength, int tabLength, int width) {
const char* dictionary = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
unsigned char* buffer;
size_t pos;
size_t bufferSize;
int i, j;
int lineLength;
bufferSize = 100;
buffer = (unsigned char*) malloc(bufferSize);
pos = 0;
lineLength = 0;
for(i = 0; i < tabLength; i++) {
CHECK_BUFFER_SIZE()
buffer[pos++] = '\t';
}
i = 0;
while(dataLength >= 3) {
dataLength -= 3;
buffer[pos++] = dictionary[(data[i] >> 2) & 0x3F];
CHECK_LINE_END_STRING();
buffer[pos++] = dictionary[(((data[i] << 4) & 0x30) | ((data[i+1] >> 4) & 0x0F)) & 0x3F];
CHECK_LINE_END_STRING();
buffer[pos++] = dictionary[(((data[i+1] << 2) & 0x3C) | ((data[i+2] >> 6) & 0x03)) & 0x03F];
CHECK_LINE_END_STRING();
buffer[pos++] = dictionary[data[i+2] & 0x3F];
CHECK_LINE_END_STRING();
i += 3;
}
if(dataLength == 2) {
buffer[pos++] = dictionary[(data[i] >> 2) & 0x3F];
CHECK_LINE_END_STRING();
buffer[pos++] = dictionary[(((data[i] << 4) & 0x30) | ((data[i+1] >> 4) & 0x0F)) & 0x3F];
CHECK_LINE_END_STRING();
buffer[pos++] = dictionary[(data[i+1] << 2) & 0x3C];
CHECK_LINE_END_STRING();
buffer[pos++] = '=';
} else if(dataLength == 1) {
buffer[pos++] = dictionary[(data[i] >> 2) & 0x3F];
CHECK_LINE_END_STRING();
buffer[pos++] = dictionary[(data[i] << 4) & 0x30];
CHECK_LINE_END_STRING();
buffer[pos++] = '=';
CHECK_LINE_END_STRING();
buffer[pos++] = '=';
}
CHECK_BUFFER_SIZE();
buffer[pos++] = '\n';
CHECK_BUFFER_SIZE();
buffer[pos++] = '\0';
return (char*) buffer;
}

View File

@ -0,0 +1,12 @@
link_directories(${PROJECT_BINARY_DIR}/common ${PROJECT_BINARY_DIR}/hfs)
#set(COREFOUNDATION_LIBRARY CoreFoundation)
IF (APPLE)
FIND_LIBRARY(COREFOUNDATION_LIBRARY CoreFoundation)
ENDIF (APPLE)
add_executable(emf_decrypter emf_decrypter.c emf_init.c)
target_link_libraries (emf_decrypter hfs common crypto ${COREFOUNDATION_LIBRARY})
install(TARGETS emf_decrypter DESTINATION .)

View File

@ -0,0 +1,42 @@
//As of iOS 4, class keys 1 to 4 are used for files, class 5 usage is unknown
#define MAX_CLASS_KEYS 5
#define CLASS_DKEY 4
typedef struct EMFInfo
{
Volume* volume;
uint64_t volume_id;
uint64_t volume_offset;
uint32_t classKeys_bitset;
AES_KEY emfkey;
AES_KEY classKeys[MAX_CLASS_KEYS];
}EMFInfo;
EMFInfo* EMF_init(Volume*, char*);
#define CPROTECT_V2_LENGTH 0x38 //56
#define CP_WRAPPEDKEYSIZE 40 /* 2x4 = 8, 8x8 = 64 */
//http://www.opensource.apple.com/source/xnu/xnu-1699.22.73/bsd/sys/cprotect.h
typedef struct cprotect_xattr_v2
{
uint16_t xattr_major_version; // =2
uint16_t xattr_minor_version; // =0
uint32_t flags; // leaks stack dword in one code path (cp_handle_vnop)
uint32_t persistent_class;
uint32_t key_size; //0x28
uint8_t persistent_key[0x28];
} cprotect_xattr_v2;
#define CPROTECT_V4_LENGTH 0x4C //76
typedef struct cprotect_xattr_v4
{
uint16_t xattr_major_version; // =4
uint16_t xattr_minor_version; // =0
uint32_t xxx_length; // 0xc
uint32_t protection_class_id;
uint32_t wrapped_length; //0x28
uint8_t xxx_junk[20]; //uninitialized ?
uint8_t wrapped_key[0x28];
} cprotect_xattr_v4;

View File

@ -0,0 +1,217 @@
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/types.h>
#include <inttypes.h>
#include <libgen.h>
#include <openssl/aes.h>
#include <hfs/hfslib.h>
#include "emf.h"
char endianness;
void TestByteOrder()
{
short int word = 0x0001;
char *byte = (char *) &word;
endianness = byte[0] ? IS_LITTLE_ENDIAN : IS_BIG_ENDIAN;
}
void iv_for_lba(uint32_t lba, uint32_t* iv)
{
int i;
for(i = 0; i < 4; i++)
{
if(lba & 1)
lba = 0x80000061 ^ (lba >> 1);
else
lba = lba >> 1;
iv[i] = lba;
}
}
int EMF_unwrap_filekey_forclass(EMFInfo* emf, uint8_t* wrapped_file_key, uint32_t protection_class_id, AES_KEY* file_key)
{
uint8_t fk[32]={0};
if (protection_class_id < 1 || protection_class_id >= MAX_CLASS_KEYS)
return -1;
if ((emf->classKeys_bitset & (1 << protection_class_id)) == 0)
{
printf("Class key %d not available\n", protection_class_id);
return -1;
}
if(AES_unwrap_key(&(emf->classKeys[protection_class_id-1]), NULL, fk, wrapped_file_key, 40)!= 32)
{
fprintf(stderr, "EMF_unwrap_filekey_forclass unwrap FAIL, protection_class_id=%d\n", protection_class_id);
return -1;
}
AES_set_decrypt_key(fk, 32*8, file_key);
return 0;
}
void EMF_fix_and_decrypt_block(EMFInfo* emf, uint8_t* buffer, uint32_t lba, uint32_t blockSize, AES_KEY* filekey)
{
uint32_t volumeOffset = emf->volume_offset;
uint32_t iv[4];
//reencrypt with emf key to get correct ciphertext
iv_for_lba(volumeOffset + lba, iv);
AES_cbc_encrypt(buffer, buffer, blockSize, &(emf->emfkey), (uint8_t*) iv, AES_ENCRYPT);
//decrypt with file key
iv_for_lba(volumeOffset + lba, iv);
AES_cbc_encrypt(buffer, buffer, blockSize, filekey, (uint8_t*) iv, AES_DECRYPT);
}
int EMF_decrypt_file_blocks(EMFInfo* emf, HFSPlusCatalogFile* file, uint8_t* wrapped_file_key, uint32_t protection_class)
{
AES_KEY filekey;
if( EMF_unwrap_filekey_forclass(emf, wrapped_file_key, protection_class, &filekey))
{
return -1;
}
io_func* io = openRawFile(file->fileID, &file->dataFork, (HFSPlusCatalogRecord*)file, emf->volume);
if(io == NULL)
{
fprintf(stderr, "openRawFile %d FAIL!\n", file->fileID);
return -1;
}
RawFile* rawFile = (RawFile*) io->data;
Extent* extent = rawFile->extents;
uint32_t blockSize = emf->volume->volumeHeader->blockSize;
uint32_t i;
uint8_t* buffer = malloc(blockSize);
if(buffer == NULL)
return -1;
//decrypt all blocks in all extents
//the last block can contain stuff from erased files maybe ?
while( extent != NULL)
{
for(i=0; i < extent->blockCount; i++)
{
if(READ(emf->volume->image, (extent->startBlock + i) * blockSize, blockSize, buffer))
{
EMF_fix_and_decrypt_block(emf, buffer, extent->startBlock + i, blockSize, &filekey);
//write back to image
WRITE(emf->volume->image, (extent->startBlock + i) * blockSize, blockSize, buffer);
}
}
extent = extent->next;
}
free(buffer);
return 0;
}
int EMF_decrypt_folder(EMFInfo* emf, HFSCatalogNodeID folderID)
{
CatalogRecordList* list;
CatalogRecordList* theList;
HFSPlusCatalogFolder* folder;
HFSPlusCatalogFile* file;
char* name;
cprotect_xattr_v2* cprotect_xattr;
uint8_t* wrapped_file_key;
theList = list = getFolderContents(folderID, emf->volume);
while(list != NULL)
{
name = unicodeToAscii(&list->name);
if(list->record->recordType == kHFSPlusFolderRecord)
{
folder = (HFSPlusCatalogFolder*)list->record;
EMF_decrypt_folder(emf, folder->folderID);
}
else if(list->record->recordType == kHFSPlusFileRecord)
{
file = (HFSPlusCatalogFile*)list->record;
size_t attr_len = getAttribute(emf->volume, file->fileID, "com.apple.system.cprotect", (uint8_t**) &cprotect_xattr);
if(cprotect_xattr != NULL && attr_len > 0)
{
if (cprotect_xattr->xattr_major_version == 2 && attr_len == CPROTECT_V2_LENGTH)
{
printf("Decrypting %s\n", name);
if(!EMF_decrypt_file_blocks(emf, file, cprotect_xattr->persistent_key, cprotect_xattr->persistent_class))
{
//TODO HAX: update cprotect xattr version field (bit1) to mark file as decrypted ?
//cprotect_xattr->version |= 1;
//setAttribute(volume, file->fileID, "com.apple.system.cprotect", (uint8_t*) cprotect_xattr, CPROTECT_V2_LENGTH);
}
}
else if (cprotect_xattr->xattr_major_version == 4 && attr_len == CPROTECT_V4_LENGTH)
{
//not just yet :)
}
else if (cprotect_xattr->xattr_major_version & 1)
{
//TODO: file already decrypted by this tool ?
}
else
{
fprintf(stderr, "Unknown cprotect xattr version/length : %x/%zx\n", cprotect_xattr->xattr_major_version, attr_len);
}
}
}
free(name);
list = list->next;
}
releaseCatalogRecordList(theList);
}
int main(int argc, const char *argv[]) {
io_func* io;
Volume* volume;
TestByteOrder();
if(argc < 2) {
printf("usage: %s <image-file>\n", argv[0]);
return 0;
}
io = openFlatFile(argv[1]);
if(io == NULL) {
fprintf(stderr, "error: Cannot open image-file.\n");
return 1;
}
volume = openVolume(io);
if(volume == NULL) {
fprintf(stderr, "error: Cannot open volume.\n");
CLOSE(io);
return 1;
}
printf("WARNING ! This tool will modify the hfs image and possibly wreck it if something goes wrong !\n"
"Make sure to backup the image before proceeding\n");
printf("Press a key to continue or CTRL-C to abort\n");
getchar();
char* dir = dirname((char*)argv[1]);
EMFInfo* emf = EMF_init(volume, dir);
if(emf != NULL)
{
EMF_decrypt_folder(emf, kHFSRootFolderID);
}
closeVolume(volume);
CLOSE(io);
return 0;
}

View File

@ -0,0 +1,146 @@
#include <stdio.h>
#include <CoreFoundation/CoreFoundation.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <hfs/hfsplus.h>
#include <openssl/aes.h>
#include "hfs/hfslib.h"
#include "emf.h"
size_t ConvertHexaCFString(CFStringRef s, uint8_t** bytes)
{
uint32_t len = CFStringGetLength(s);
uint8_t* hex = malloc(len+1);
if(hex == NULL)
return 0;
if(!CFStringGetCString(s, hex, len+1, kCFStringEncodingASCII))
{
free(hex);
return 0;
}
size_t size = 0;
hexToBytes(hex, bytes, &size);
free(hex);
return size;
}
void grabClassKey(const void *key, const void *value, void *context)
{
EMFInfo* emf = (EMFInfo*) context;
uint8_t* class_key = NULL;
if(CFGetTypeID(key) != CFStringGetTypeID() || CFGetTypeID(value) != CFStringGetTypeID())
return;
SInt32 clas = CFStringGetIntValue((CFStringRef)key);
if(clas > 0 && clas <= MAX_CLASS_KEYS && CFStringGetLength((CFStringRef) value) == 64)
{
if(ConvertHexaCFString(value, &class_key) == 32)
{
AES_set_decrypt_key(class_key, 32*8, &(emf->classKeys[clas-1]));
free(class_key);
emf->classKeys_bitset |= 1 << clas;
}
}
}
EMFInfo* EMF_init(Volume* volume, char* imagePath)
{
uint8_t* emfk = NULL;
uint8_t* dkey = NULL;
uint64_t volume_id = *((uint64_t*) (&volume->volumeHeader->finderInfo[6]));
FLIPENDIAN(volume_id);
if(imagePath == NULL)
imagePath = ".";
printf("Volume identifier : %llx\n", volume_id);
printf("Searching for %s/%llx.plist\n", imagePath, volume_id);
CFStringRef path = CFStringCreateWithFormat(NULL, NULL, CFSTR("%s/%llx.plist"), imagePath, volume_id);
CFURLRef fileURL = CFURLCreateWithFileSystemPath(NULL, path, kCFURLPOSIXPathStyle, FALSE);
CFRelease(path);
CFReadStreamRef stream = CFReadStreamCreateWithFile(NULL, fileURL);
CFRelease(fileURL);
if(stream == NULL)
{
return NULL;
}
if(!CFReadStreamOpen(stream))
{
fprintf(stderr, "Cannot open file\n");
return NULL;
}
CFPropertyListRef dict = CFPropertyListCreateWithStream(NULL, stream, 0, kCFPropertyListImmutable, NULL, NULL);
CFRelease(stream);
if (dict == NULL || CFGetTypeID(dict) != CFDictionaryGetTypeID())
return NULL;
CFStringRef emfHex = CFDictionaryGetValue(dict, CFSTR("EMF"));
CFStringRef dkeyHex = CFDictionaryGetValue(dict, CFSTR("DKey"));
CFNumberRef dataVolumeOffset = CFDictionaryGetValue (dict, CFSTR("dataVolumeOffset"));
if (emfHex == NULL || CFGetTypeID(emfHex) != CFStringGetTypeID())
return NULL;
if (dkeyHex == NULL || CFGetTypeID(dkeyHex) != CFStringGetTypeID())
return NULL;
if (dataVolumeOffset == NULL || CFGetTypeID(dataVolumeOffset) != CFNumberGetTypeID())
return NULL;
EMFInfo* emf = malloc(sizeof(EMFInfo));
if(emf == NULL)
return NULL;
memset(emf, 0, sizeof(EMFInfo));
emf->volume = volume;
CFNumberGetValue(dataVolumeOffset, kCFNumberLongType, &emf->volume_offset);
printf("Data partition offset = %llx\n", emf->volume_offset);
if(ConvertHexaCFString(emfHex, &emfk) != 32)
{
fprintf(stderr, "Invalid EMF key\n");
free(emf);
return NULL;
}
if(ConvertHexaCFString(dkeyHex, &dkey) != 32)
{
fprintf(stderr, "Invalid DKey key\n");
free(emf);
return NULL;
}
AES_set_encrypt_key(emfk, 32*8, &(emf->emfkey));
AES_set_decrypt_key(dkey, 32*8, &(emf->classKeys[CLASS_DKEY-1]));
emf->classKeys_bitset |= 1 << CLASS_DKEY;
CFDictionaryRef classKeys = CFDictionaryGetValue(dict, CFSTR("classKeys"));
if(classKeys != NULL && CFGetTypeID(classKeys) == CFDictionaryGetTypeID())
{
printf("Reading class keys, NSProtectionComplete files should be decrypted OK\n");
CFDictionaryApplyFunction(classKeys, grabClassKey, (void*) emf);
}
else
{
printf("Only NSProtectionNone files will be decrypted\n");
}
free(emfk);
free(dkey);
return emf;
}

View File

@ -0,0 +1,18 @@
INCLUDE(FindZLIB)
IF(NOT ZLIB_FOUND)
message(FATAL_ERROR "zlib is required for hfs!")
ENDIF(NOT ZLIB_FOUND)
include_directories(${ZLIB_INCLUDE_DIR})
link_directories(${ZLIB_LIBRARIES})
link_directories (${PROJECT_BINARY_DIR}/common)
add_library(hfs btree.c catalog.c extents.c xattr.c fastunicodecompare.c flatfile.c hfslib.c rawfile.c utility.c volume.c hfscompress.c)
target_link_libraries(hfs common z)
add_executable(hfsplus hfs.c)
target_link_libraries (hfsplus hfs)
install(TARGETS hfsplus DESTINATION .)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,119 @@
#include <stdlib.h>
#include <string.h>
#include <hfs/hfsplus.h>
static inline void flipExtentDescriptor(HFSPlusExtentDescriptor* extentDescriptor) {
FLIPENDIAN(extentDescriptor->startBlock);
FLIPENDIAN(extentDescriptor->blockCount);
}
void flipExtentRecord(HFSPlusExtentRecord* extentRecord) {
HFSPlusExtentDescriptor *extentDescriptor;
extentDescriptor = (HFSPlusExtentDescriptor*)extentRecord;
flipExtentDescriptor(&extentDescriptor[0]);
flipExtentDescriptor(&extentDescriptor[1]);
flipExtentDescriptor(&extentDescriptor[2]);
flipExtentDescriptor(&extentDescriptor[3]);
flipExtentDescriptor(&extentDescriptor[4]);
flipExtentDescriptor(&extentDescriptor[5]);
flipExtentDescriptor(&extentDescriptor[6]);
flipExtentDescriptor(&extentDescriptor[7]);
}
static int extentCompare(BTKey* vLeft, BTKey* vRight) {
HFSPlusExtentKey* left;
HFSPlusExtentKey* right;
left = (HFSPlusExtentKey*) vLeft;
right =(HFSPlusExtentKey*) vRight;
if(left->forkType < right->forkType) {
return -1;
} else if(left->forkType > right->forkType) {
return 1;
} else {
if(left->fileID < right->fileID) {
return -1;
} else if(left->fileID > right->fileID) {
return 1;
} else {
if(left->startBlock < right->startBlock) {
return -1;
} else if(left->startBlock > right->startBlock) {
return 1;
} else {
/* do a safety check on key length. Otherwise, bad things may happen later on when we try to add or remove with this key */
if(left->keyLength == right->keyLength) {
return 0;
} else if(left->keyLength < right->keyLength) {
return -1;
} else {
return 1;
}
return 0;
}
}
}
}
static BTKey* extentKeyRead(off_t offset, io_func* io) {
HFSPlusExtentKey* key;
key = (HFSPlusExtentKey*) malloc(sizeof(HFSPlusExtentKey));
if(!READ(io, offset, sizeof(HFSPlusExtentKey), key))
return NULL;
FLIPENDIAN(key->keyLength);
FLIPENDIAN(key->forkType);
FLIPENDIAN(key->fileID);
FLIPENDIAN(key->startBlock);
return (BTKey*)key;
}
static int extentKeyWrite(off_t offset, BTKey* toWrite, io_func* io) {
HFSPlusExtentKey* key;
key = (HFSPlusExtentKey*) malloc(sizeof(HFSPlusExtentKey));
memcpy(key, toWrite, sizeof(HFSPlusExtentKey));
FLIPENDIAN(key->keyLength);
FLIPENDIAN(key->forkType);
FLIPENDIAN(key->fileID);
FLIPENDIAN(key->startBlock);
if(!WRITE(io, offset, sizeof(HFSPlusExtentKey), key))
return FALSE;
free(key);
return TRUE;
}
static void extentKeyPrint(BTKey* toPrint) {
HFSPlusExtentKey* key;
key = (HFSPlusExtentKey*)toPrint;
printf("extent%d:%d:%d", key->forkType, key->fileID, key->startBlock);
}
static BTKey* extentDataRead(off_t offset, io_func* io) {
HFSPlusExtentRecord* record;
record = (HFSPlusExtentRecord*) malloc(sizeof(HFSPlusExtentRecord));
if(!READ(io, offset, sizeof(HFSPlusExtentRecord), record))
return NULL;
flipExtentRecord(record);
return (BTKey*)record;
}
BTree* openExtentsTree(io_func* file) {
return openBTree(file, &extentCompare, &extentKeyRead, &extentKeyWrite, &extentKeyPrint, &extentDataRead);
}

View File

@ -0,0 +1,418 @@
#include <stdint.h>
#include <hfs/hfsplus.h>
/* This routine is taken from Apple's TN 1150, with adaptations for C */
/* The lower case table consists of a 256-entry high-byte table followed by
some number of 256-entry subtables. The high-byte table contains either an
offset to the subtable for characters with that high byte or zero, which
means that there are no case mappings or ignored characters in that block.
Ignored characters are mapped to zero.
*/
uint16_t gLowerCaseTable[] = {
/* 0 */ 0x0100, 0x0200, 0x0000, 0x0300, 0x0400, 0x0500, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* 1 */ 0x0600, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* 2 */ 0x0700, 0x0800, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* 3 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* 4 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* 5 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* 6 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* 7 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* 8 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* 9 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* A */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* B */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* C */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* D */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* E */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* F */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0900, 0x0A00,
/* 0 */ 0xFFFF, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x000F,
/* 1 */ 0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017,
0x0018, 0x0019, 0x001A, 0x001B, 0x001C, 0x001D, 0x001E, 0x001F,
/* 2 */ 0x0020, 0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027,
0x0028, 0x0029, 0x002A, 0x002B, 0x002C, 0x002D, 0x002E, 0x002F,
/* 3 */ 0x0030, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035, 0x0036, 0x0037,
0x0038, 0x0039, 0x003A, 0x003B, 0x003C, 0x003D, 0x003E, 0x003F,
/* 4 */ 0x0040, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067,
0x0068, 0x0069, 0x006A, 0x006B, 0x006C, 0x006D, 0x006E, 0x006F,
/* 5 */ 0x0070, 0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077,
0x0078, 0x0079, 0x007A, 0x005B, 0x005C, 0x005D, 0x005E, 0x005F,
/* 6 */ 0x0060, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067,
0x0068, 0x0069, 0x006A, 0x006B, 0x006C, 0x006D, 0x006E, 0x006F,
/* 7 */ 0x0070, 0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077,
0x0078, 0x0079, 0x007A, 0x007B, 0x007C, 0x007D, 0x007E, 0x007F,
/* 8 */ 0x0080, 0x0081, 0x0082, 0x0083, 0x0084, 0x0085, 0x0086, 0x0087,
0x0088, 0x0089, 0x008A, 0x008B, 0x008C, 0x008D, 0x008E, 0x008F,
/* 9 */ 0x0090, 0x0091, 0x0092, 0x0093, 0x0094, 0x0095, 0x0096, 0x0097,
0x0098, 0x0099, 0x009A, 0x009B, 0x009C, 0x009D, 0x009E, 0x009F,
/* A */ 0x00A0, 0x00A1, 0x00A2, 0x00A3, 0x00A4, 0x00A5, 0x00A6, 0x00A7,
0x00A8, 0x00A9, 0x00AA, 0x00AB, 0x00AC, 0x00AD, 0x00AE, 0x00AF,
/* B */ 0x00B0, 0x00B1, 0x00B2, 0x00B3, 0x00B4, 0x00B5, 0x00B6, 0x00B7,
0x00B8, 0x00B9, 0x00BA, 0x00BB, 0x00BC, 0x00BD, 0x00BE, 0x00BF,
/* C */ 0x00C0, 0x00C1, 0x00C2, 0x00C3, 0x00C4, 0x00C5, 0x00E6, 0x00C7,
0x00C8, 0x00C9, 0x00CA, 0x00CB, 0x00CC, 0x00CD, 0x00CE, 0x00CF,
/* D */ 0x00F0, 0x00D1, 0x00D2, 0x00D3, 0x00D4, 0x00D5, 0x00D6, 0x00D7,
0x00F8, 0x00D9, 0x00DA, 0x00DB, 0x00DC, 0x00DD, 0x00FE, 0x00DF,
/* E */ 0x00E0, 0x00E1, 0x00E2, 0x00E3, 0x00E4, 0x00E5, 0x00E6, 0x00E7,
0x00E8, 0x00E9, 0x00EA, 0x00EB, 0x00EC, 0x00ED, 0x00EE, 0x00EF,
/* F */ 0x00F0, 0x00F1, 0x00F2, 0x00F3, 0x00F4, 0x00F5, 0x00F6, 0x00F7,
0x00F8, 0x00F9, 0x00FA, 0x00FB, 0x00FC, 0x00FD, 0x00FE, 0x00FF,
/* 0 */ 0x0100, 0x0101, 0x0102, 0x0103, 0x0104, 0x0105, 0x0106, 0x0107,
0x0108, 0x0109, 0x010A, 0x010B, 0x010C, 0x010D, 0x010E, 0x010F,
/* 1 */ 0x0111, 0x0111, 0x0112, 0x0113, 0x0114, 0x0115, 0x0116, 0x0117,
0x0118, 0x0119, 0x011A, 0x011B, 0x011C, 0x011D, 0x011E, 0x011F,
/* 2 */ 0x0120, 0x0121, 0x0122, 0x0123, 0x0124, 0x0125, 0x0127, 0x0127,
0x0128, 0x0129, 0x012A, 0x012B, 0x012C, 0x012D, 0x012E, 0x012F,
/* 3 */ 0x0130, 0x0131, 0x0133, 0x0133, 0x0134, 0x0135, 0x0136, 0x0137,
0x0138, 0x0139, 0x013A, 0x013B, 0x013C, 0x013D, 0x013E, 0x0140,
/* 4 */ 0x0140, 0x0142, 0x0142, 0x0143, 0x0144, 0x0145, 0x0146, 0x0147,
0x0148, 0x0149, 0x014B, 0x014B, 0x014C, 0x014D, 0x014E, 0x014F,
/* 5 */ 0x0150, 0x0151, 0x0153, 0x0153, 0x0154, 0x0155, 0x0156, 0x0157,
0x0158, 0x0159, 0x015A, 0x015B, 0x015C, 0x015D, 0x015E, 0x015F,
/* 6 */ 0x0160, 0x0161, 0x0162, 0x0163, 0x0164, 0x0165, 0x0167, 0x0167,
0x0168, 0x0169, 0x016A, 0x016B, 0x016C, 0x016D, 0x016E, 0x016F,
/* 7 */ 0x0170, 0x0171, 0x0172, 0x0173, 0x0174, 0x0175, 0x0176, 0x0177,
0x0178, 0x0179, 0x017A, 0x017B, 0x017C, 0x017D, 0x017E, 0x017F,
/* 8 */ 0x0180, 0x0253, 0x0183, 0x0183, 0x0185, 0x0185, 0x0254, 0x0188,
0x0188, 0x0256, 0x0257, 0x018C, 0x018C, 0x018D, 0x01DD, 0x0259,
/* 9 */ 0x025B, 0x0192, 0x0192, 0x0260, 0x0263, 0x0195, 0x0269, 0x0268,
0x0199, 0x0199, 0x019A, 0x019B, 0x026F, 0x0272, 0x019E, 0x0275,
/* A */ 0x01A0, 0x01A1, 0x01A3, 0x01A3, 0x01A5, 0x01A5, 0x01A6, 0x01A8,
0x01A8, 0x0283, 0x01AA, 0x01AB, 0x01AD, 0x01AD, 0x0288, 0x01AF,
/* B */ 0x01B0, 0x028A, 0x028B, 0x01B4, 0x01B4, 0x01B6, 0x01B6, 0x0292,
0x01B9, 0x01B9, 0x01BA, 0x01BB, 0x01BD, 0x01BD, 0x01BE, 0x01BF,
/* C */ 0x01C0, 0x01C1, 0x01C2, 0x01C3, 0x01C6, 0x01C6, 0x01C6, 0x01C9,
0x01C9, 0x01C9, 0x01CC, 0x01CC, 0x01CC, 0x01CD, 0x01CE, 0x01CF,
/* D */ 0x01D0, 0x01D1, 0x01D2, 0x01D3, 0x01D4, 0x01D5, 0x01D6, 0x01D7,
0x01D8, 0x01D9, 0x01DA, 0x01DB, 0x01DC, 0x01DD, 0x01DE, 0x01DF,
/* E */ 0x01E0, 0x01E1, 0x01E2, 0x01E3, 0x01E5, 0x01E5, 0x01E6, 0x01E7,
0x01E8, 0x01E9, 0x01EA, 0x01EB, 0x01EC, 0x01ED, 0x01EE, 0x01EF,
/* F */ 0x01F0, 0x01F3, 0x01F3, 0x01F3, 0x01F4, 0x01F5, 0x01F6, 0x01F7,
0x01F8, 0x01F9, 0x01FA, 0x01FB, 0x01FC, 0x01FD, 0x01FE, 0x01FF,
/* 0 */ 0x0300, 0x0301, 0x0302, 0x0303, 0x0304, 0x0305, 0x0306, 0x0307,
0x0308, 0x0309, 0x030A, 0x030B, 0x030C, 0x030D, 0x030E, 0x030F,
/* 1 */ 0x0310, 0x0311, 0x0312, 0x0313, 0x0314, 0x0315, 0x0316, 0x0317,
0x0318, 0x0319, 0x031A, 0x031B, 0x031C, 0x031D, 0x031E, 0x031F,
/* 2 */ 0x0320, 0x0321, 0x0322, 0x0323, 0x0324, 0x0325, 0x0326, 0x0327,
0x0328, 0x0329, 0x032A, 0x032B, 0x032C, 0x032D, 0x032E, 0x032F,
/* 3 */ 0x0330, 0x0331, 0x0332, 0x0333, 0x0334, 0x0335, 0x0336, 0x0337,
0x0338, 0x0339, 0x033A, 0x033B, 0x033C, 0x033D, 0x033E, 0x033F,
/* 4 */ 0x0340, 0x0341, 0x0342, 0x0343, 0x0344, 0x0345, 0x0346, 0x0347,
0x0348, 0x0349, 0x034A, 0x034B, 0x034C, 0x034D, 0x034E, 0x034F,
/* 5 */ 0x0350, 0x0351, 0x0352, 0x0353, 0x0354, 0x0355, 0x0356, 0x0357,
0x0358, 0x0359, 0x035A, 0x035B, 0x035C, 0x035D, 0x035E, 0x035F,
/* 6 */ 0x0360, 0x0361, 0x0362, 0x0363, 0x0364, 0x0365, 0x0366, 0x0367,
0x0368, 0x0369, 0x036A, 0x036B, 0x036C, 0x036D, 0x036E, 0x036F,
/* 7 */ 0x0370, 0x0371, 0x0372, 0x0373, 0x0374, 0x0375, 0x0376, 0x0377,
0x0378, 0x0379, 0x037A, 0x037B, 0x037C, 0x037D, 0x037E, 0x037F,
/* 8 */ 0x0380, 0x0381, 0x0382, 0x0383, 0x0384, 0x0385, 0x0386, 0x0387,
0x0388, 0x0389, 0x038A, 0x038B, 0x038C, 0x038D, 0x038E, 0x038F,
/* 9 */ 0x0390, 0x03B1, 0x03B2, 0x03B3, 0x03B4, 0x03B5, 0x03B6, 0x03B7,
0x03B8, 0x03B9, 0x03BA, 0x03BB, 0x03BC, 0x03BD, 0x03BE, 0x03BF,
/* A */ 0x03C0, 0x03C1, 0x03A2, 0x03C3, 0x03C4, 0x03C5, 0x03C6, 0x03C7,
0x03C8, 0x03C9, 0x03AA, 0x03AB, 0x03AC, 0x03AD, 0x03AE, 0x03AF,
/* B */ 0x03B0, 0x03B1, 0x03B2, 0x03B3, 0x03B4, 0x03B5, 0x03B6, 0x03B7,
0x03B8, 0x03B9, 0x03BA, 0x03BB, 0x03BC, 0x03BD, 0x03BE, 0x03BF,
/* C */ 0x03C0, 0x03C1, 0x03C2, 0x03C3, 0x03C4, 0x03C5, 0x03C6, 0x03C7,
0x03C8, 0x03C9, 0x03CA, 0x03CB, 0x03CC, 0x03CD, 0x03CE, 0x03CF,
/* D */ 0x03D0, 0x03D1, 0x03D2, 0x03D3, 0x03D4, 0x03D5, 0x03D6, 0x03D7,
0x03D8, 0x03D9, 0x03DA, 0x03DB, 0x03DC, 0x03DD, 0x03DE, 0x03DF,
/* E */ 0x03E0, 0x03E1, 0x03E3, 0x03E3, 0x03E5, 0x03E5, 0x03E7, 0x03E7,
0x03E9, 0x03E9, 0x03EB, 0x03EB, 0x03ED, 0x03ED, 0x03EF, 0x03EF,
/* F */ 0x03F0, 0x03F1, 0x03F2, 0x03F3, 0x03F4, 0x03F5, 0x03F6, 0x03F7,
0x03F8, 0x03F9, 0x03FA, 0x03FB, 0x03FC, 0x03FD, 0x03FE, 0x03FF,
/* 0 */ 0x0400, 0x0401, 0x0452, 0x0403, 0x0454, 0x0455, 0x0456, 0x0407,
0x0458, 0x0459, 0x045A, 0x045B, 0x040C, 0x040D, 0x040E, 0x045F,
/* 1 */ 0x0430, 0x0431, 0x0432, 0x0433, 0x0434, 0x0435, 0x0436, 0x0437,
0x0438, 0x0419, 0x043A, 0x043B, 0x043C, 0x043D, 0x043E, 0x043F,
/* 2 */ 0x0440, 0x0441, 0x0442, 0x0443, 0x0444, 0x0445, 0x0446, 0x0447,
0x0448, 0x0449, 0x044A, 0x044B, 0x044C, 0x044D, 0x044E, 0x044F,
/* 3 */ 0x0430, 0x0431, 0x0432, 0x0433, 0x0434, 0x0435, 0x0436, 0x0437,
0x0438, 0x0439, 0x043A, 0x043B, 0x043C, 0x043D, 0x043E, 0x043F,
/* 4 */ 0x0440, 0x0441, 0x0442, 0x0443, 0x0444, 0x0445, 0x0446, 0x0447,
0x0448, 0x0449, 0x044A, 0x044B, 0x044C, 0x044D, 0x044E, 0x044F,
/* 5 */ 0x0450, 0x0451, 0x0452, 0x0453, 0x0454, 0x0455, 0x0456, 0x0457,
0x0458, 0x0459, 0x045A, 0x045B, 0x045C, 0x045D, 0x045E, 0x045F,
/* 6 */ 0x0461, 0x0461, 0x0463, 0x0463, 0x0465, 0x0465, 0x0467, 0x0467,
0x0469, 0x0469, 0x046B, 0x046B, 0x046D, 0x046D, 0x046F, 0x046F,
/* 7 */ 0x0471, 0x0471, 0x0473, 0x0473, 0x0475, 0x0475, 0x0476, 0x0477,
0x0479, 0x0479, 0x047B, 0x047B, 0x047D, 0x047D, 0x047F, 0x047F,
/* 8 */ 0x0481, 0x0481, 0x0482, 0x0483, 0x0484, 0x0485, 0x0486, 0x0487,
0x0488, 0x0489, 0x048A, 0x048B, 0x048C, 0x048D, 0x048E, 0x048F,
/* 9 */ 0x0491, 0x0491, 0x0493, 0x0493, 0x0495, 0x0495, 0x0497, 0x0497,
0x0499, 0x0499, 0x049B, 0x049B, 0x049D, 0x049D, 0x049F, 0x049F,
/* A */ 0x04A1, 0x04A1, 0x04A3, 0x04A3, 0x04A5, 0x04A5, 0x04A7, 0x04A7,
0x04A9, 0x04A9, 0x04AB, 0x04AB, 0x04AD, 0x04AD, 0x04AF, 0x04AF,
/* B */ 0x04B1, 0x04B1, 0x04B3, 0x04B3, 0x04B5, 0x04B5, 0x04B7, 0x04B7,
0x04B9, 0x04B9, 0x04BB, 0x04BB, 0x04BD, 0x04BD, 0x04BF, 0x04BF,
/* C */ 0x04C0, 0x04C1, 0x04C2, 0x04C4, 0x04C4, 0x04C5, 0x04C6, 0x04C8,
0x04C8, 0x04C9, 0x04CA, 0x04CC, 0x04CC, 0x04CD, 0x04CE, 0x04CF,
/* D */ 0x04D0, 0x04D1, 0x04D2, 0x04D3, 0x04D4, 0x04D5, 0x04D6, 0x04D7,
0x04D8, 0x04D9, 0x04DA, 0x04DB, 0x04DC, 0x04DD, 0x04DE, 0x04DF,
/* E */ 0x04E0, 0x04E1, 0x04E2, 0x04E3, 0x04E4, 0x04E5, 0x04E6, 0x04E7,
0x04E8, 0x04E9, 0x04EA, 0x04EB, 0x04EC, 0x04ED, 0x04EE, 0x04EF,
/* F */ 0x04F0, 0x04F1, 0x04F2, 0x04F3, 0x04F4, 0x04F5, 0x04F6, 0x04F7,
0x04F8, 0x04F9, 0x04FA, 0x04FB, 0x04FC, 0x04FD, 0x04FE, 0x04FF,
/* 0 */ 0x0500, 0x0501, 0x0502, 0x0503, 0x0504, 0x0505, 0x0506, 0x0507,
0x0508, 0x0509, 0x050A, 0x050B, 0x050C, 0x050D, 0x050E, 0x050F,
/* 1 */ 0x0510, 0x0511, 0x0512, 0x0513, 0x0514, 0x0515, 0x0516, 0x0517,
0x0518, 0x0519, 0x051A, 0x051B, 0x051C, 0x051D, 0x051E, 0x051F,
/* 2 */ 0x0520, 0x0521, 0x0522, 0x0523, 0x0524, 0x0525, 0x0526, 0x0527,
0x0528, 0x0529, 0x052A, 0x052B, 0x052C, 0x052D, 0x052E, 0x052F,
/* 3 */ 0x0530, 0x0561, 0x0562, 0x0563, 0x0564, 0x0565, 0x0566, 0x0567,
0x0568, 0x0569, 0x056A, 0x056B, 0x056C, 0x056D, 0x056E, 0x056F,
/* 4 */ 0x0570, 0x0571, 0x0572, 0x0573, 0x0574, 0x0575, 0x0576, 0x0577,
0x0578, 0x0579, 0x057A, 0x057B, 0x057C, 0x057D, 0x057E, 0x057F,
/* 5 */ 0x0580, 0x0581, 0x0582, 0x0583, 0x0584, 0x0585, 0x0586, 0x0557,
0x0558, 0x0559, 0x055A, 0x055B, 0x055C, 0x055D, 0x055E, 0x055F,
/* 6 */ 0x0560, 0x0561, 0x0562, 0x0563, 0x0564, 0x0565, 0x0566, 0x0567,
0x0568, 0x0569, 0x056A, 0x056B, 0x056C, 0x056D, 0x056E, 0x056F,
/* 7 */ 0x0570, 0x0571, 0x0572, 0x0573, 0x0574, 0x0575, 0x0576, 0x0577,
0x0578, 0x0579, 0x057A, 0x057B, 0x057C, 0x057D, 0x057E, 0x057F,
/* 8 */ 0x0580, 0x0581, 0x0582, 0x0583, 0x0584, 0x0585, 0x0586, 0x0587,
0x0588, 0x0589, 0x058A, 0x058B, 0x058C, 0x058D, 0x058E, 0x058F,
/* 9 */ 0x0590, 0x0591, 0x0592, 0x0593, 0x0594, 0x0595, 0x0596, 0x0597,
0x0598, 0x0599, 0x059A, 0x059B, 0x059C, 0x059D, 0x059E, 0x059F,
/* A */ 0x05A0, 0x05A1, 0x05A2, 0x05A3, 0x05A4, 0x05A5, 0x05A6, 0x05A7,
0x05A8, 0x05A9, 0x05AA, 0x05AB, 0x05AC, 0x05AD, 0x05AE, 0x05AF,
/* B */ 0x05B0, 0x05B1, 0x05B2, 0x05B3, 0x05B4, 0x05B5, 0x05B6, 0x05B7,
0x05B8, 0x05B9, 0x05BA, 0x05BB, 0x05BC, 0x05BD, 0x05BE, 0x05BF,
/* C */ 0x05C0, 0x05C1, 0x05C2, 0x05C3, 0x05C4, 0x05C5, 0x05C6, 0x05C7,
0x05C8, 0x05C9, 0x05CA, 0x05CB, 0x05CC, 0x05CD, 0x05CE, 0x05CF,
/* D */ 0x05D0, 0x05D1, 0x05D2, 0x05D3, 0x05D4, 0x05D5, 0x05D6, 0x05D7,
0x05D8, 0x05D9, 0x05DA, 0x05DB, 0x05DC, 0x05DD, 0x05DE, 0x05DF,
/* E */ 0x05E0, 0x05E1, 0x05E2, 0x05E3, 0x05E4, 0x05E5, 0x05E6, 0x05E7,
0x05E8, 0x05E9, 0x05EA, 0x05EB, 0x05EC, 0x05ED, 0x05EE, 0x05EF,
/* F */ 0x05F0, 0x05F1, 0x05F2, 0x05F3, 0x05F4, 0x05F5, 0x05F6, 0x05F7,
0x05F8, 0x05F9, 0x05FA, 0x05FB, 0x05FC, 0x05FD, 0x05FE, 0x05FF,
/* 0 */ 0x1000, 0x1001, 0x1002, 0x1003, 0x1004, 0x1005, 0x1006, 0x1007,
0x1008, 0x1009, 0x100A, 0x100B, 0x100C, 0x100D, 0x100E, 0x100F,
/* 1 */ 0x1010, 0x1011, 0x1012, 0x1013, 0x1014, 0x1015, 0x1016, 0x1017,
0x1018, 0x1019, 0x101A, 0x101B, 0x101C, 0x101D, 0x101E, 0x101F,
/* 2 */ 0x1020, 0x1021, 0x1022, 0x1023, 0x1024, 0x1025, 0x1026, 0x1027,
0x1028, 0x1029, 0x102A, 0x102B, 0x102C, 0x102D, 0x102E, 0x102F,
/* 3 */ 0x1030, 0x1031, 0x1032, 0x1033, 0x1034, 0x1035, 0x1036, 0x1037,
0x1038, 0x1039, 0x103A, 0x103B, 0x103C, 0x103D, 0x103E, 0x103F,
/* 4 */ 0x1040, 0x1041, 0x1042, 0x1043, 0x1044, 0x1045, 0x1046, 0x1047,
0x1048, 0x1049, 0x104A, 0x104B, 0x104C, 0x104D, 0x104E, 0x104F,
/* 5 */ 0x1050, 0x1051, 0x1052, 0x1053, 0x1054, 0x1055, 0x1056, 0x1057,
0x1058, 0x1059, 0x105A, 0x105B, 0x105C, 0x105D, 0x105E, 0x105F,
/* 6 */ 0x1060, 0x1061, 0x1062, 0x1063, 0x1064, 0x1065, 0x1066, 0x1067,
0x1068, 0x1069, 0x106A, 0x106B, 0x106C, 0x106D, 0x106E, 0x106F,
/* 7 */ 0x1070, 0x1071, 0x1072, 0x1073, 0x1074, 0x1075, 0x1076, 0x1077,
0x1078, 0x1079, 0x107A, 0x107B, 0x107C, 0x107D, 0x107E, 0x107F,
/* 8 */ 0x1080, 0x1081, 0x1082, 0x1083, 0x1084, 0x1085, 0x1086, 0x1087,
0x1088, 0x1089, 0x108A, 0x108B, 0x108C, 0x108D, 0x108E, 0x108F,
/* 9 */ 0x1090, 0x1091, 0x1092, 0x1093, 0x1094, 0x1095, 0x1096, 0x1097,
0x1098, 0x1099, 0x109A, 0x109B, 0x109C, 0x109D, 0x109E, 0x109F,
/* A */ 0x10D0, 0x10D1, 0x10D2, 0x10D3, 0x10D4, 0x10D5, 0x10D6, 0x10D7,
0x10D8, 0x10D9, 0x10DA, 0x10DB, 0x10DC, 0x10DD, 0x10DE, 0x10DF,
/* B */ 0x10E0, 0x10E1, 0x10E2, 0x10E3, 0x10E4, 0x10E5, 0x10E6, 0x10E7,
0x10E8, 0x10E9, 0x10EA, 0x10EB, 0x10EC, 0x10ED, 0x10EE, 0x10EF,
/* C */ 0x10F0, 0x10F1, 0x10F2, 0x10F3, 0x10F4, 0x10F5, 0x10C6, 0x10C7,
0x10C8, 0x10C9, 0x10CA, 0x10CB, 0x10CC, 0x10CD, 0x10CE, 0x10CF,
/* D */ 0x10D0, 0x10D1, 0x10D2, 0x10D3, 0x10D4, 0x10D5, 0x10D6, 0x10D7,
0x10D8, 0x10D9, 0x10DA, 0x10DB, 0x10DC, 0x10DD, 0x10DE, 0x10DF,
/* E */ 0x10E0, 0x10E1, 0x10E2, 0x10E3, 0x10E4, 0x10E5, 0x10E6, 0x10E7,
0x10E8, 0x10E9, 0x10EA, 0x10EB, 0x10EC, 0x10ED, 0x10EE, 0x10EF,
/* F */ 0x10F0, 0x10F1, 0x10F2, 0x10F3, 0x10F4, 0x10F5, 0x10F6, 0x10F7,
0x10F8, 0x10F9, 0x10FA, 0x10FB, 0x10FC, 0x10FD, 0x10FE, 0x10FF,
/* 0 */ 0x2000, 0x2001, 0x2002, 0x2003, 0x2004, 0x2005, 0x2006, 0x2007,
0x2008, 0x2009, 0x200A, 0x200B, 0x0000, 0x0000, 0x0000, 0x0000,
/* 1 */ 0x2010, 0x2011, 0x2012, 0x2013, 0x2014, 0x2015, 0x2016, 0x2017,
0x2018, 0x2019, 0x201A, 0x201B, 0x201C, 0x201D, 0x201E, 0x201F,
/* 2 */ 0x2020, 0x2021, 0x2022, 0x2023, 0x2024, 0x2025, 0x2026, 0x2027,
0x2028, 0x2029, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x202F,
/* 3 */ 0x2030, 0x2031, 0x2032, 0x2033, 0x2034, 0x2035, 0x2036, 0x2037,
0x2038, 0x2039, 0x203A, 0x203B, 0x203C, 0x203D, 0x203E, 0x203F,
/* 4 */ 0x2040, 0x2041, 0x2042, 0x2043, 0x2044, 0x2045, 0x2046, 0x2047,
0x2048, 0x2049, 0x204A, 0x204B, 0x204C, 0x204D, 0x204E, 0x204F,
/* 5 */ 0x2050, 0x2051, 0x2052, 0x2053, 0x2054, 0x2055, 0x2056, 0x2057,
0x2058, 0x2059, 0x205A, 0x205B, 0x205C, 0x205D, 0x205E, 0x205F,
/* 6 */ 0x2060, 0x2061, 0x2062, 0x2063, 0x2064, 0x2065, 0x2066, 0x2067,
0x2068, 0x2069, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* 7 */ 0x2070, 0x2071, 0x2072, 0x2073, 0x2074, 0x2075, 0x2076, 0x2077,
0x2078, 0x2079, 0x207A, 0x207B, 0x207C, 0x207D, 0x207E, 0x207F,
/* 8 */ 0x2080, 0x2081, 0x2082, 0x2083, 0x2084, 0x2085, 0x2086, 0x2087,
0x2088, 0x2089, 0x208A, 0x208B, 0x208C, 0x208D, 0x208E, 0x208F,
/* 9 */ 0x2090, 0x2091, 0x2092, 0x2093, 0x2094, 0x2095, 0x2096, 0x2097,
0x2098, 0x2099, 0x209A, 0x209B, 0x209C, 0x209D, 0x209E, 0x209F,
/* A */ 0x20A0, 0x20A1, 0x20A2, 0x20A3, 0x20A4, 0x20A5, 0x20A6, 0x20A7,
0x20A8, 0x20A9, 0x20AA, 0x20AB, 0x20AC, 0x20AD, 0x20AE, 0x20AF,
/* B */ 0x20B0, 0x20B1, 0x20B2, 0x20B3, 0x20B4, 0x20B5, 0x20B6, 0x20B7,
0x20B8, 0x20B9, 0x20BA, 0x20BB, 0x20BC, 0x20BD, 0x20BE, 0x20BF,
/* C */ 0x20C0, 0x20C1, 0x20C2, 0x20C3, 0x20C4, 0x20C5, 0x20C6, 0x20C7,
0x20C8, 0x20C9, 0x20CA, 0x20CB, 0x20CC, 0x20CD, 0x20CE, 0x20CF,
/* D */ 0x20D0, 0x20D1, 0x20D2, 0x20D3, 0x20D4, 0x20D5, 0x20D6, 0x20D7,
0x20D8, 0x20D9, 0x20DA, 0x20DB, 0x20DC, 0x20DD, 0x20DE, 0x20DF,
/* E */ 0x20E0, 0x20E1, 0x20E2, 0x20E3, 0x20E4, 0x20E5, 0x20E6, 0x20E7,
0x20E8, 0x20E9, 0x20EA, 0x20EB, 0x20EC, 0x20ED, 0x20EE, 0x20EF,
/* F */ 0x20F0, 0x20F1, 0x20F2, 0x20F3, 0x20F4, 0x20F5, 0x20F6, 0x20F7,
0x20F8, 0x20F9, 0x20FA, 0x20FB, 0x20FC, 0x20FD, 0x20FE, 0x20FF,
/* 0 */ 0x2100, 0x2101, 0x2102, 0x2103, 0x2104, 0x2105, 0x2106, 0x2107,
0x2108, 0x2109, 0x210A, 0x210B, 0x210C, 0x210D, 0x210E, 0x210F,
/* 1 */ 0x2110, 0x2111, 0x2112, 0x2113, 0x2114, 0x2115, 0x2116, 0x2117,
0x2118, 0x2119, 0x211A, 0x211B, 0x211C, 0x211D, 0x211E, 0x211F,
/* 2 */ 0x2120, 0x2121, 0x2122, 0x2123, 0x2124, 0x2125, 0x2126, 0x2127,
0x2128, 0x2129, 0x212A, 0x212B, 0x212C, 0x212D, 0x212E, 0x212F,
/* 3 */ 0x2130, 0x2131, 0x2132, 0x2133, 0x2134, 0x2135, 0x2136, 0x2137,
0x2138, 0x2139, 0x213A, 0x213B, 0x213C, 0x213D, 0x213E, 0x213F,
/* 4 */ 0x2140, 0x2141, 0x2142, 0x2143, 0x2144, 0x2145, 0x2146, 0x2147,
0x2148, 0x2149, 0x214A, 0x214B, 0x214C, 0x214D, 0x214E, 0x214F,
/* 5 */ 0x2150, 0x2151, 0x2152, 0x2153, 0x2154, 0x2155, 0x2156, 0x2157,
0x2158, 0x2159, 0x215A, 0x215B, 0x215C, 0x215D, 0x215E, 0x215F,
/* 6 */ 0x2170, 0x2171, 0x2172, 0x2173, 0x2174, 0x2175, 0x2176, 0x2177,
0x2178, 0x2179, 0x217A, 0x217B, 0x217C, 0x217D, 0x217E, 0x217F,
/* 7 */ 0x2170, 0x2171, 0x2172, 0x2173, 0x2174, 0x2175, 0x2176, 0x2177,
0x2178, 0x2179, 0x217A, 0x217B, 0x217C, 0x217D, 0x217E, 0x217F,
/* 8 */ 0x2180, 0x2181, 0x2182, 0x2183, 0x2184, 0x2185, 0x2186, 0x2187,
0x2188, 0x2189, 0x218A, 0x218B, 0x218C, 0x218D, 0x218E, 0x218F,
/* 9 */ 0x2190, 0x2191, 0x2192, 0x2193, 0x2194, 0x2195, 0x2196, 0x2197,
0x2198, 0x2199, 0x219A, 0x219B, 0x219C, 0x219D, 0x219E, 0x219F,
/* A */ 0x21A0, 0x21A1, 0x21A2, 0x21A3, 0x21A4, 0x21A5, 0x21A6, 0x21A7,
0x21A8, 0x21A9, 0x21AA, 0x21AB, 0x21AC, 0x21AD, 0x21AE, 0x21AF,
/* B */ 0x21B0, 0x21B1, 0x21B2, 0x21B3, 0x21B4, 0x21B5, 0x21B6, 0x21B7,
0x21B8, 0x21B9, 0x21BA, 0x21BB, 0x21BC, 0x21BD, 0x21BE, 0x21BF,
/* C */ 0x21C0, 0x21C1, 0x21C2, 0x21C3, 0x21C4, 0x21C5, 0x21C6, 0x21C7,
0x21C8, 0x21C9, 0x21CA, 0x21CB, 0x21CC, 0x21CD, 0x21CE, 0x21CF,
/* D */ 0x21D0, 0x21D1, 0x21D2, 0x21D3, 0x21D4, 0x21D5, 0x21D6, 0x21D7,
0x21D8, 0x21D9, 0x21DA, 0x21DB, 0x21DC, 0x21DD, 0x21DE, 0x21DF,
/* E */ 0x21E0, 0x21E1, 0x21E2, 0x21E3, 0x21E4, 0x21E5, 0x21E6, 0x21E7,
0x21E8, 0x21E9, 0x21EA, 0x21EB, 0x21EC, 0x21ED, 0x21EE, 0x21EF,
/* F */ 0x21F0, 0x21F1, 0x21F2, 0x21F3, 0x21F4, 0x21F5, 0x21F6, 0x21F7,
0x21F8, 0x21F9, 0x21FA, 0x21FB, 0x21FC, 0x21FD, 0x21FE, 0x21FF,
/* 0 */ 0xFE00, 0xFE01, 0xFE02, 0xFE03, 0xFE04, 0xFE05, 0xFE06, 0xFE07,
0xFE08, 0xFE09, 0xFE0A, 0xFE0B, 0xFE0C, 0xFE0D, 0xFE0E, 0xFE0F,
/* 1 */ 0xFE10, 0xFE11, 0xFE12, 0xFE13, 0xFE14, 0xFE15, 0xFE16, 0xFE17,
0xFE18, 0xFE19, 0xFE1A, 0xFE1B, 0xFE1C, 0xFE1D, 0xFE1E, 0xFE1F,
/* 2 */ 0xFE20, 0xFE21, 0xFE22, 0xFE23, 0xFE24, 0xFE25, 0xFE26, 0xFE27,
0xFE28, 0xFE29, 0xFE2A, 0xFE2B, 0xFE2C, 0xFE2D, 0xFE2E, 0xFE2F,
/* 3 */ 0xFE30, 0xFE31, 0xFE32, 0xFE33, 0xFE34, 0xFE35, 0xFE36, 0xFE37,
0xFE38, 0xFE39, 0xFE3A, 0xFE3B, 0xFE3C, 0xFE3D, 0xFE3E, 0xFE3F,
/* 4 */ 0xFE40, 0xFE41, 0xFE42, 0xFE43, 0xFE44, 0xFE45, 0xFE46, 0xFE47,
0xFE48, 0xFE49, 0xFE4A, 0xFE4B, 0xFE4C, 0xFE4D, 0xFE4E, 0xFE4F,
/* 5 */ 0xFE50, 0xFE51, 0xFE52, 0xFE53, 0xFE54, 0xFE55, 0xFE56, 0xFE57,
0xFE58, 0xFE59, 0xFE5A, 0xFE5B, 0xFE5C, 0xFE5D, 0xFE5E, 0xFE5F,
/* 6 */ 0xFE60, 0xFE61, 0xFE62, 0xFE63, 0xFE64, 0xFE65, 0xFE66, 0xFE67,
0xFE68, 0xFE69, 0xFE6A, 0xFE6B, 0xFE6C, 0xFE6D, 0xFE6E, 0xFE6F,
/* 7 */ 0xFE70, 0xFE71, 0xFE72, 0xFE73, 0xFE74, 0xFE75, 0xFE76, 0xFE77,
0xFE78, 0xFE79, 0xFE7A, 0xFE7B, 0xFE7C, 0xFE7D, 0xFE7E, 0xFE7F,
/* 8 */ 0xFE80, 0xFE81, 0xFE82, 0xFE83, 0xFE84, 0xFE85, 0xFE86, 0xFE87,
0xFE88, 0xFE89, 0xFE8A, 0xFE8B, 0xFE8C, 0xFE8D, 0xFE8E, 0xFE8F,
/* 9 */ 0xFE90, 0xFE91, 0xFE92, 0xFE93, 0xFE94, 0xFE95, 0xFE96, 0xFE97,
0xFE98, 0xFE99, 0xFE9A, 0xFE9B, 0xFE9C, 0xFE9D, 0xFE9E, 0xFE9F,
/* A */ 0xFEA0, 0xFEA1, 0xFEA2, 0xFEA3, 0xFEA4, 0xFEA5, 0xFEA6, 0xFEA7,
0xFEA8, 0xFEA9, 0xFEAA, 0xFEAB, 0xFEAC, 0xFEAD, 0xFEAE, 0xFEAF,
/* B */ 0xFEB0, 0xFEB1, 0xFEB2, 0xFEB3, 0xFEB4, 0xFEB5, 0xFEB6, 0xFEB7,
0xFEB8, 0xFEB9, 0xFEBA, 0xFEBB, 0xFEBC, 0xFEBD, 0xFEBE, 0xFEBF,
/* C */ 0xFEC0, 0xFEC1, 0xFEC2, 0xFEC3, 0xFEC4, 0xFEC5, 0xFEC6, 0xFEC7,
0xFEC8, 0xFEC9, 0xFECA, 0xFECB, 0xFECC, 0xFECD, 0xFECE, 0xFECF,
/* D */ 0xFED0, 0xFED1, 0xFED2, 0xFED3, 0xFED4, 0xFED5, 0xFED6, 0xFED7,
0xFED8, 0xFED9, 0xFEDA, 0xFEDB, 0xFEDC, 0xFEDD, 0xFEDE, 0xFEDF,
/* E */ 0xFEE0, 0xFEE1, 0xFEE2, 0xFEE3, 0xFEE4, 0xFEE5, 0xFEE6, 0xFEE7,
0xFEE8, 0xFEE9, 0xFEEA, 0xFEEB, 0xFEEC, 0xFEED, 0xFEEE, 0xFEEF,
/* F */ 0xFEF0, 0xFEF1, 0xFEF2, 0xFEF3, 0xFEF4, 0xFEF5, 0xFEF6, 0xFEF7,
0xFEF8, 0xFEF9, 0xFEFA, 0xFEFB, 0xFEFC, 0xFEFD, 0xFEFE, 0x0000,
/* 0 */ 0xFF00, 0xFF01, 0xFF02, 0xFF03, 0xFF04, 0xFF05, 0xFF06, 0xFF07,
0xFF08, 0xFF09, 0xFF0A, 0xFF0B, 0xFF0C, 0xFF0D, 0xFF0E, 0xFF0F,
/* 1 */ 0xFF10, 0xFF11, 0xFF12, 0xFF13, 0xFF14, 0xFF15, 0xFF16, 0xFF17,
0xFF18, 0xFF19, 0xFF1A, 0xFF1B, 0xFF1C, 0xFF1D, 0xFF1E, 0xFF1F,
/* 2 */ 0xFF20, 0xFF41, 0xFF42, 0xFF43, 0xFF44, 0xFF45, 0xFF46, 0xFF47,
0xFF48, 0xFF49, 0xFF4A, 0xFF4B, 0xFF4C, 0xFF4D, 0xFF4E, 0xFF4F,
/* 3 */ 0xFF50, 0xFF51, 0xFF52, 0xFF53, 0xFF54, 0xFF55, 0xFF56, 0xFF57,
0xFF58, 0xFF59, 0xFF5A, 0xFF3B, 0xFF3C, 0xFF3D, 0xFF3E, 0xFF3F,
/* 4 */ 0xFF40, 0xFF41, 0xFF42, 0xFF43, 0xFF44, 0xFF45, 0xFF46, 0xFF47,
0xFF48, 0xFF49, 0xFF4A, 0xFF4B, 0xFF4C, 0xFF4D, 0xFF4E, 0xFF4F,
/* 5 */ 0xFF50, 0xFF51, 0xFF52, 0xFF53, 0xFF54, 0xFF55, 0xFF56, 0xFF57,
0xFF58, 0xFF59, 0xFF5A, 0xFF5B, 0xFF5C, 0xFF5D, 0xFF5E, 0xFF5F,
/* 6 */ 0xFF60, 0xFF61, 0xFF62, 0xFF63, 0xFF64, 0xFF65, 0xFF66, 0xFF67,
0xFF68, 0xFF69, 0xFF6A, 0xFF6B, 0xFF6C, 0xFF6D, 0xFF6E, 0xFF6F,
/* 7 */ 0xFF70, 0xFF71, 0xFF72, 0xFF73, 0xFF74, 0xFF75, 0xFF76, 0xFF77,
0xFF78, 0xFF79, 0xFF7A, 0xFF7B, 0xFF7C, 0xFF7D, 0xFF7E, 0xFF7F,
/* 8 */ 0xFF80, 0xFF81, 0xFF82, 0xFF83, 0xFF84, 0xFF85, 0xFF86, 0xFF87,
0xFF88, 0xFF89, 0xFF8A, 0xFF8B, 0xFF8C, 0xFF8D, 0xFF8E, 0xFF8F,
/* 9 */ 0xFF90, 0xFF91, 0xFF92, 0xFF93, 0xFF94, 0xFF95, 0xFF96, 0xFF97,
0xFF98, 0xFF99, 0xFF9A, 0xFF9B, 0xFF9C, 0xFF9D, 0xFF9E, 0xFF9F,
/* A */ 0xFFA0, 0xFFA1, 0xFFA2, 0xFFA3, 0xFFA4, 0xFFA5, 0xFFA6, 0xFFA7,
0xFFA8, 0xFFA9, 0xFFAA, 0xFFAB, 0xFFAC, 0xFFAD, 0xFFAE, 0xFFAF,
/* B */ 0xFFB0, 0xFFB1, 0xFFB2, 0xFFB3, 0xFFB4, 0xFFB5, 0xFFB6, 0xFFB7,
0xFFB8, 0xFFB9, 0xFFBA, 0xFFBB, 0xFFBC, 0xFFBD, 0xFFBE, 0xFFBF,
/* C */ 0xFFC0, 0xFFC1, 0xFFC2, 0xFFC3, 0xFFC4, 0xFFC5, 0xFFC6, 0xFFC7,
0xFFC8, 0xFFC9, 0xFFCA, 0xFFCB, 0xFFCC, 0xFFCD, 0xFFCE, 0xFFCF,
/* D */ 0xFFD0, 0xFFD1, 0xFFD2, 0xFFD3, 0xFFD4, 0xFFD5, 0xFFD6, 0xFFD7,
0xFFD8, 0xFFD9, 0xFFDA, 0xFFDB, 0xFFDC, 0xFFDD, 0xFFDE, 0xFFDF,
/* E */ 0xFFE0, 0xFFE1, 0xFFE2, 0xFFE3, 0xFFE4, 0xFFE5, 0xFFE6, 0xFFE7,
0xFFE8, 0xFFE9, 0xFFEA, 0xFFEB, 0xFFEC, 0xFFED, 0xFFEE, 0xFFEF,
/* F */ 0xFFF0, 0xFFF1, 0xFFF2, 0xFFF3, 0xFFF4, 0xFFF5, 0xFFF6, 0xFFF7,
0xFFF8, 0xFFF9, 0xFFFA, 0xFFFB, 0xFFFC, 0xFFFD, 0xFFFE, 0xFFFF,
};
int32_t FastUnicodeCompare ( register uint16_t str1[], register uint16_t length1,
register uint16_t str2[], register uint16_t length2)
{
register uint16_t c1,c2;
register uint16_t temp;
register uint16_t* lowerCaseTable;
lowerCaseTable = gLowerCaseTable;
while (1) {
c1 = 0;
c2 = 0;
while (length1 && c1 == 0) {
c1 = *(str1++);
--length1;
if ((temp = lowerCaseTable[c1>>8]) != 0)
c1 = lowerCaseTable[temp + (c1 & 0x00FF)];
}
while (length2 && c2 == 0) {
c2 = *(str2++);
--length2;
if ((temp = lowerCaseTable[c2>>8]) != 0)
c2 = lowerCaseTable[temp + (c2 & 0x00FF)];
}
if (c1 == ':') {
c1 = '/';
}
if (c2 == ':') {
c2 = '/';
}
if (c1 != c2)
break;
if (c1 == 0)
return 0;
}
if (c1 < c2)
return -1;
else
return 1;
}

View File

@ -0,0 +1,104 @@
#include <stdlib.h>
#include <hfs/hfsplus.h>
static int flatFileRead(io_func* io, off_t location, size_t size, void *buffer) {
FILE* file;
file = (FILE*) io->data;
if(size == 0) {
return TRUE;
}
//printf("%d %d\n", location, size); fflush(stdout);
if(fseeko(file, location, SEEK_SET) != 0) {
perror("fseek");
return FALSE;
}
if(fread(buffer, size, 1, file) != 1) {
perror("fread");
return FALSE;
} else {
return TRUE;
}
}
static int flatFileWrite(io_func* io, off_t location, size_t size, void *buffer) {
FILE* file;
/*int i;
printf("write: %lld %d - ", location, size); fflush(stdout);
for(i = 0; i < size; i++) {
printf("%x ", ((unsigned char*)buffer)[i]);
fflush(stdout);
}
printf("\n"); fflush(stdout);*/
if(size == 0) {
return TRUE;
}
file = (FILE*) io->data;
if(fseeko(file, location, SEEK_SET) != 0) {
perror("fseek");
return FALSE;
}
if(fwrite(buffer, size, 1, file) != 1) {
perror("fwrite");
return FALSE;
} else {
return TRUE;
}
return TRUE;
}
static void closeFlatFile(io_func* io) {
FILE* file;
file = (FILE*) io->data;
fclose(file);
free(io);
}
io_func* openFlatFile(const char* fileName) {
io_func* io;
io = (io_func*) malloc(sizeof(io_func));
io->data = fopen(fileName, "rb+");
if(io->data == NULL) {
perror("fopen");
return NULL;
}
io->read = &flatFileRead;
io->write = &flatFileWrite;
io->close = &closeFlatFile;
return io;
}
io_func* openFlatFileRO(const char* fileName) {
io_func* io;
io = (io_func*) malloc(sizeof(io_func));
io->data = fopen(fileName, "rb");
if(io->data == NULL) {
perror("fopen");
return NULL;
}
io->read = &flatFileRead;
io->write = &flatFileWrite;
io->close = &closeFlatFile;
return io;
}

View File

@ -0,0 +1,333 @@
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <hfs/hfsplus.h>
#include <dirent.h>
#include <hfs/hfslib.h>
#include "abstractfile.h"
#include <inttypes.h>
char endianness;
void cmd_ls(Volume* volume, int argc, const char *argv[]) {
if(argc > 1)
hfs_ls(volume, argv[1]);
else
hfs_ls(volume, "/");
}
void cmd_cat(Volume* volume, int argc, const char *argv[]) {
HFSPlusCatalogRecord* record;
AbstractFile* stdoutFile;
record = getRecordFromPath(argv[1], volume, NULL, NULL);
stdoutFile = createAbstractFileFromFile(stdout);
if(record != NULL) {
if(record->recordType == kHFSPlusFileRecord)
writeToFile((HFSPlusCatalogFile*)record, stdoutFile, volume);
else
printf("Not a file\n");
} else {
printf("No such file or directory\n");
}
free(record);
free(stdoutFile);
}
void cmd_extract(Volume* volume, int argc, const char *argv[]) {
HFSPlusCatalogRecord* record;
AbstractFile *outFile;
if(argc < 3) {
printf("Not enough arguments");
return;
}
outFile = createAbstractFileFromFile(fopen(argv[2], "wb"));
if(outFile == NULL) {
printf("cannot create file");
}
record = getRecordFromPath(argv[1], volume, NULL, NULL);
if(record != NULL) {
if(record->recordType == kHFSPlusFileRecord)
writeToFile((HFSPlusCatalogFile*)record, outFile, volume);
else
printf("Not a file\n");
} else {
printf("No such file or directory\n");
}
outFile->close(outFile);
free(record);
}
void cmd_mv(Volume* volume, int argc, const char *argv[]) {
if(argc > 2) {
move(argv[1], argv[2], volume);
} else {
printf("Not enough arguments");
}
}
void cmd_symlink(Volume* volume, int argc, const char *argv[]) {
if(argc > 2) {
makeSymlink(argv[1], argv[2], volume);
} else {
printf("Not enough arguments");
}
}
void cmd_mkdir(Volume* volume, int argc, const char *argv[]) {
if(argc > 1) {
newFolder(argv[1], volume);
} else {
printf("Not enough arguments");
}
}
void cmd_add(Volume* volume, int argc, const char *argv[]) {
AbstractFile *inFile;
if(argc < 3) {
printf("Not enough arguments");
return;
}
inFile = createAbstractFileFromFile(fopen(argv[1], "rb"));
if(inFile == NULL) {
printf("file to add not found");
}
add_hfs(volume, inFile, argv[2]);
}
void cmd_rm(Volume* volume, int argc, const char *argv[]) {
if(argc > 1) {
removeFile(argv[1], volume);
} else {
printf("Not enough arguments");
}
}
void cmd_chmod(Volume* volume, int argc, const char *argv[]) {
int mode;
if(argc > 2) {
sscanf(argv[1], "%o", &mode);
chmodFile(argv[2], mode, volume);
} else {
printf("Not enough arguments");
}
}
void cmd_extractall(Volume* volume, int argc, const char *argv[]) {
HFSPlusCatalogRecord* record;
char cwd[1024];
char* name;
ASSERT(getcwd(cwd, 1024) != NULL, "cannot get current working directory");
if(argc > 1)
record = getRecordFromPath(argv[1], volume, &name, NULL);
else
record = getRecordFromPath("/", volume, &name, NULL);
if(argc > 2) {
ASSERT(chdir(argv[2]) == 0, "chdir");
}
if(record != NULL) {
if(record->recordType == kHFSPlusFolderRecord)
extractAllInFolder(((HFSPlusCatalogFolder*)record)->folderID, volume);
else
printf("Not a folder\n");
} else {
printf("No such file or directory\n");
}
free(record);
ASSERT(chdir(cwd) == 0, "chdir");
}
void cmd_rmall(Volume* volume, int argc, const char *argv[]) {
HFSPlusCatalogRecord* record;
char* name;
char initPath[1024];
int lastCharOfPath;
if(argc > 1) {
record = getRecordFromPath(argv[1], volume, &name, NULL);
strcpy(initPath, argv[1]);
lastCharOfPath = strlen(argv[1]) - 1;
if(argv[1][lastCharOfPath] != '/') {
initPath[lastCharOfPath + 1] = '/';
initPath[lastCharOfPath + 2] = '\0';
}
} else {
record = getRecordFromPath("/", volume, &name, NULL);
initPath[0] = '/';
initPath[1] = '\0';
}
if(record != NULL) {
if(record->recordType == kHFSPlusFolderRecord) {
removeAllInFolder(((HFSPlusCatalogFolder*)record)->folderID, volume, initPath);
} else {
printf("Not a folder\n");
}
} else {
printf("No such file or directory\n");
}
free(record);
}
void cmd_addall(Volume* volume, int argc, const char *argv[]) {
if(argc < 2) {
printf("Not enough arguments");
return;
}
if(argc > 2) {
addall_hfs(volume, argv[1], argv[2]);
} else {
addall_hfs(volume, argv[1], "/");
}
}
void cmd_grow(Volume* volume, int argc, const char *argv[]) {
uint64_t newSize;
if(argc < 2) {
printf("Not enough arguments\n");
return;
}
newSize = 0;
sscanf(argv[1], "%" PRId64, &newSize);
grow_hfs(volume, newSize);
printf("grew volume: %" PRId64 "\n", newSize);
}
void cmd_getattr(Volume* volume, int argc, const char *argv[]) {
HFSPlusCatalogRecord* record;
if(argc < 3) {
printf("Not enough arguments");
return;
}
record = getRecordFromPath(argv[1], volume, NULL, NULL);
if(record != NULL) {
HFSCatalogNodeID id;
uint8_t* data;
size_t size;
if(record->recordType == kHFSPlusFileRecord)
id = ((HFSPlusCatalogFile*)record)->fileID;
else
id = ((HFSPlusCatalogFolder*)record)->folderID;
size = getAttribute(volume, id, argv[2], &data);
if(size > 0) {
fwrite(data, size, 1, stdout);
free(data);
} else {
printf("No such attribute\n");
}
} else {
printf("No such file or directory\n");
}
free(record);
}
void TestByteOrder()
{
short int word = 0x0001;
char *byte = (char *) &word;
endianness = byte[0] ? IS_LITTLE_ENDIAN : IS_BIG_ENDIAN;
}
int main(int argc, const char *argv[]) {
io_func* io;
Volume* volume;
TestByteOrder();
if(argc < 3) {
printf("usage: %s <image-file> <ls|cat|mv|mkdir|add|rm|chmod|extract|extractall|rmall|addall|debug> <arguments>\n", argv[0]);
return 0;
}
io = openFlatFile(argv[1]);
if(io == NULL) {
fprintf(stderr, "error: Cannot open image-file.\n");
return 1;
}
volume = openVolume(io);
if(volume == NULL) {
fprintf(stderr, "error: Cannot open volume.\n");
CLOSE(io);
return 1;
}
if(argc > 1) {
if(strcmp(argv[2], "ls") == 0) {
cmd_ls(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "cat") == 0) {
cmd_cat(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "mv") == 0) {
cmd_mv(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "symlink") == 0) {
cmd_symlink(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "mkdir") == 0) {
cmd_mkdir(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "add") == 0) {
cmd_add(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "rm") == 0) {
cmd_rm(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "chmod") == 0) {
cmd_chmod(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "extract") == 0) {
cmd_extract(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "extractall") == 0) {
cmd_extractall(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "rmall") == 0) {
cmd_rmall(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "addall") == 0) {
cmd_addall(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "grow") == 0) {
cmd_grow(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "getattr") == 0) {
cmd_getattr(volume, argc - 2, argv + 2);
} else if(strcmp(argv[2], "debug") == 0) {
if(argc > 3 && strcmp(argv[3], "verbose") == 0) {
debugBTree(volume->catalogTree, TRUE);
} else {
debugBTree(volume->catalogTree, FALSE);
}
}
}
closeVolume(volume);
CLOSE(io);
return 0;
}

View File

@ -0,0 +1,292 @@
#include <zlib.h>
#include "common.h"
#include <hfs/hfsplus.h>
#include <hfs/hfscompress.h>
void flipHFSPlusDecmpfs(HFSPlusDecmpfs* compressData) {
FLIPENDIANLE(compressData->magic);
FLIPENDIANLE(compressData->flags);
FLIPENDIANLE(compressData->size);
}
void flipRsrcHead(HFSPlusCmpfRsrcHead* data) {
FLIPENDIAN(data->headerSize);
FLIPENDIAN(data->totalSize);
FLIPENDIAN(data->dataSize);
FLIPENDIAN(data->flags);
}
void flipRsrcBlockHead(HFSPlusCmpfRsrcBlockHead* data) {
FLIPENDIAN(data->dataSize);
FLIPENDIANLE(data->numBlocks);
}
void flipRsrcBlock(HFSPlusCmpfRsrcBlock* data) {
FLIPENDIANLE(data->offset);
FLIPENDIANLE(data->size);
}
void flipHFSPlusCmpfEnd(HFSPlusCmpfEnd* data) {
FLIPENDIAN(data->unk1);
FLIPENDIAN(data->unk2);
FLIPENDIAN(data->unk3);
FLIPENDIAN(data->magic);
FLIPENDIAN(data->flags);
FLIPENDIANLE(data->size);
FLIPENDIANLE(data->unk4);
}
static int compressedRead(io_func* io, off_t location, size_t size, void *buffer) {
HFSPlusCompressed* data = (HFSPlusCompressed*) io->data;
size_t toRead;
while(size > 0) {
if(data->cached && location >= data->cachedStart && location < data->cachedEnd) {
if((data->cachedEnd - location) < size)
toRead = data->cachedEnd - location;
else
toRead = size;
memcpy(buffer, data->cached + (location - data->cachedStart), toRead);
size -= toRead;
location += toRead;
buffer = ((uint8_t*) buffer) + toRead;
}
if(size == 0)
break;
// Try to cache
uLongf actualSize;
uint32_t block = location / 0x10000;
uint8_t* compressed = (uint8_t*) malloc(data->blocks->blocks[block].size);
if(!READ(data->io, data->rsrcHead.headerSize + sizeof(uint32_t) + data->blocks->blocks[block].offset, data->blocks->blocks[block].size, compressed)) {
hfs_panic("error reading");
}
if(data->cached)
free(data->cached);
data->cached = (uint8_t*) malloc(0x10000);
actualSize = 0x10000;
uncompress(data->cached, &actualSize, compressed, data->blocks->blocks[block].size);
data->cachedStart = block * 0x10000;
data->cachedEnd = data->cachedStart + actualSize;
free(compressed);
}
return TRUE;
}
static int compressedWrite(io_func* io, off_t location, size_t size, void *buffer) {
HFSPlusCompressed* data = (HFSPlusCompressed*) io->data;
if(data->cachedStart != 0 || data->cachedEnd != data->decmpfs->size) {
// Cache entire file
uint8_t* newCache = (uint8_t*) malloc(data->decmpfs->size);
compressedRead(io, 0, data->decmpfs->size, newCache);
if(data->cached)
free(data->cached);
data->cached = newCache;
data->cachedStart = 0;
data->cachedEnd = data->decmpfs->size;
}
if((location + size) > data->decmpfs->size) {
data->decmpfs->size = location + size;
data->cached = (uint8_t*) realloc(data->cached, data->decmpfs->size);
data->cachedEnd = data->decmpfs->size;
}
memcpy(data->cached + location, buffer, size);
data->dirty = TRUE;
return TRUE;
}
static void closeHFSPlusCompressed(io_func* io) {
HFSPlusCompressed* data = (HFSPlusCompressed*) io->data;
if(data->io)
CLOSE(data->io);
if(data->dirty) {
if(data->blocks)
free(data->blocks);
data->decmpfs->magic = CMPFS_MAGIC;
data->decmpfs->flags = 0x4;
data->decmpfsSize = sizeof(HFSPlusDecmpfs);
uint32_t numBlocks = (data->decmpfs->size + 0xFFFF) / 0x10000;
uint32_t blocksSize = sizeof(HFSPlusCmpfRsrcBlockHead) + (numBlocks * sizeof(HFSPlusCmpfRsrcBlock));
data->blocks = (HFSPlusCmpfRsrcBlockHead*) malloc(sizeof(HFSPlusCmpfRsrcBlockHead) + (numBlocks * sizeof(HFSPlusCmpfRsrcBlock)));
data->blocks->numBlocks = numBlocks;
data->blocks->dataSize = blocksSize - sizeof(uint32_t); // without the front dataSize in BlockHead.
data->rsrcHead.headerSize = 0x100;
data->rsrcHead.dataSize = blocksSize;
data->rsrcHead.totalSize = data->rsrcHead.headerSize + data->rsrcHead.dataSize;
data->rsrcHead.flags = 0x32;
uint8_t* buffer = (uint8_t*) malloc((0x10000 * 1.1) + 12);
uint32_t curFileOffset = data->blocks->dataSize;
uint32_t i;
for(i = 0; i < numBlocks; i++) {
data->blocks->blocks[i].offset = curFileOffset;
uLongf actualSize = (0x10000 * 1.1) + 12;
compress(buffer, &actualSize, data->cached + (0x10000 * i),
(data->decmpfs->size - (0x10000 * i)) > 0x10000 ? 0x10000 : (data->decmpfs->size - (0x10000 * i)));
data->blocks->blocks[i].size = actualSize;
// check if we can fit the whole thing into an inline extended attribute
// a little fudge factor here since sizeof(HFSPlusAttrKey) is bigger than it ought to be, since only 127 characters are strictly allowed
if(numBlocks <= 1 && (actualSize + sizeof(HFSPlusDecmpfs) + sizeof(HFSPlusAttrKey)) <= 0x1000) {
data->decmpfs->flags = 0x3;
memcpy(data->decmpfs->data, buffer, actualSize);
data->decmpfsSize = sizeof(HFSPlusDecmpfs) + actualSize;
printf("inline data\n");
break;
} else {
if(i == 0) {
data->io = openRawFile(data->file->fileID, &data->file->resourceFork, (HFSPlusCatalogRecord*)data->file, data->volume);
if(!data->io) {
hfs_panic("error opening resource fork");
}
}
WRITE(data->io, data->rsrcHead.headerSize + sizeof(uint32_t) + data->blocks->blocks[i].offset, data->blocks->blocks[i].size, buffer);
curFileOffset += data->blocks->blocks[i].size;
data->blocks->dataSize += data->blocks->blocks[i].size;
data->rsrcHead.dataSize += data->blocks->blocks[i].size;
data->rsrcHead.totalSize += data->blocks->blocks[i].size;
}
}
free(buffer);
if(data->decmpfs->flags == 0x4) {
flipRsrcHead(&data->rsrcHead);
WRITE(data->io, 0, sizeof(HFSPlusCmpfRsrcHead), &data->rsrcHead);
flipRsrcHead(&data->rsrcHead);
for(i = 0; i < data->blocks->numBlocks; i++) {
flipRsrcBlock(&data->blocks->blocks[i]);
}
flipRsrcBlockHead(data->blocks);
WRITE(data->io, data->rsrcHead.headerSize, blocksSize, data->blocks);
flipRsrcBlockHead(data->blocks);
for(i = 0; i < data->blocks->numBlocks; i++) {
flipRsrcBlock(&data->blocks->blocks[i]);
}
HFSPlusCmpfEnd end;
memset(&end, 0, sizeof(HFSPlusCmpfEnd));
end.unk1 = 0x1C;
end.unk2 = 0x32;
end.unk3 = 0x0;
end.magic = CMPFS_MAGIC;
end.flags = 0xA;
end.size = 0xFFFF01;
end.unk4 = 0x0;
flipHFSPlusCmpfEnd(&end);
WRITE(data->io, data->rsrcHead.totalSize, sizeof(HFSPlusCmpfEnd), &end);
flipHFSPlusCmpfEnd(&end);
CLOSE(data->io);
}
flipHFSPlusDecmpfs(data->decmpfs);
setAttribute(data->volume, data->file->fileID, "com.apple.decmpfs", (uint8_t*)(data->decmpfs), data->decmpfsSize);
flipHFSPlusDecmpfs(data->decmpfs);
}
if(data->cached)
free(data->cached);
if(data->blocks)
free(data->blocks);
free(data->decmpfs);
free(data);
free(io);
}
io_func* openHFSPlusCompressed(Volume* volume, HFSPlusCatalogFile* file) {
io_func* io;
HFSPlusCompressed* data;
uLongf actualSize;
io = (io_func*) malloc(sizeof(io_func));
data = (HFSPlusCompressed*) malloc(sizeof(HFSPlusCompressed));
data->volume = volume;
data->file = file;
io->data = data;
io->read = &compressedRead;
io->write = &compressedWrite;
io->close = &closeHFSPlusCompressed;
data->cached = NULL;
data->cachedStart = 0;
data->cachedEnd = 0;
data->io = NULL;
data->blocks = NULL;
data->dirty = FALSE;
data->decmpfsSize = getAttribute(volume, file->fileID, "com.apple.decmpfs", (uint8_t**)(&data->decmpfs));
if(data->decmpfsSize == 0) {
data->decmpfs = (HFSPlusDecmpfs*) malloc(0x1000);
data->decmpfs->size = 0;
return io; // previously not compressed file
}
flipHFSPlusDecmpfs(data->decmpfs);
if(data->decmpfs->flags == 0x3) {
data->cached = (uint8_t*) malloc(data->decmpfs->size);
actualSize = data->decmpfs->size;
uncompress(data->cached, &actualSize, data->decmpfs->data, data->decmpfsSize - sizeof(HFSPlusDecmpfs));
if(actualSize != data->decmpfs->size) {
fprintf(stderr, "decmpfs: size mismatch\n");
}
data->cachedStart = 0;
data->cachedEnd = actualSize;
} else {
data->io = openRawFile(file->fileID, &file->resourceFork, (HFSPlusCatalogRecord*)file, volume);
if(!data->io) {
hfs_panic("error opening resource fork");
}
if(!READ(data->io, 0, sizeof(HFSPlusCmpfRsrcHead), &data->rsrcHead)) {
hfs_panic("error reading");
}
flipRsrcHead(&data->rsrcHead);
data->blocks = (HFSPlusCmpfRsrcBlockHead*) malloc(sizeof(HFSPlusCmpfRsrcBlockHead));
if(!READ(data->io, data->rsrcHead.headerSize, sizeof(HFSPlusCmpfRsrcBlockHead), data->blocks)) {
hfs_panic("error reading");
}
flipRsrcBlockHead(data->blocks);
data->blocks = (HFSPlusCmpfRsrcBlockHead*) realloc(data->blocks, sizeof(HFSPlusCmpfRsrcBlockHead) + (sizeof(HFSPlusCmpfRsrcBlock) * data->blocks->numBlocks));
if(!READ(data->io, data->rsrcHead.headerSize + sizeof(HFSPlusCmpfRsrcBlockHead), sizeof(HFSPlusCmpfRsrcBlock) * data->blocks->numBlocks, data->blocks->blocks)) {
hfs_panic("error reading");
}
int i;
for(i = 0; i < data->blocks->numBlocks; i++) {
flipRsrcBlock(&data->blocks->blocks[i]);
}
}
return io;
}

View File

@ -0,0 +1,723 @@
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <time.h>
#include <sys/types.h>
#include "common.h"
#include <hfs/hfsplus.h>
#include <hfs/hfscompress.h>
#include "abstractfile.h"
#include <sys/stat.h>
#include <inttypes.h>
#define BUFSIZE 1024*1024
static int silence = 0;
void hfs_setsilence(int s) {
silence = s;
}
void writeToFile(HFSPlusCatalogFile* file, AbstractFile* output, Volume* volume) {
unsigned char* buffer;
io_func* io;
off_t curPosition;
size_t bytesLeft;
buffer = (unsigned char*) malloc(BUFSIZE);
if(file->permissions.ownerFlags & UF_COMPRESSED) {
io = openHFSPlusCompressed(volume, file);
if(io == NULL) {
hfs_panic("error opening file");
free(buffer);
return;
}
curPosition = 0;
bytesLeft = ((HFSPlusCompressed*) io->data)->decmpfs->size;
} else {
io = openRawFile(file->fileID, &file->dataFork, (HFSPlusCatalogRecord*)file, volume);
if(io == NULL) {
hfs_panic("error opening file");
free(buffer);
return;
}
curPosition = 0;
bytesLeft = file->dataFork.logicalSize;
}
while(bytesLeft > 0) {
if(bytesLeft > BUFSIZE) {
if(!READ(io, curPosition, BUFSIZE, buffer)) {
hfs_panic("error reading");
}
if(output->write(output, buffer, BUFSIZE) != BUFSIZE) {
hfs_panic("error writing");
}
curPosition += BUFSIZE;
bytesLeft -= BUFSIZE;
} else {
if(!READ(io, curPosition, bytesLeft, buffer)) {
hfs_panic("error reading");
}
if(output->write(output, buffer, bytesLeft) != bytesLeft) {
hfs_panic("error writing");
}
curPosition += bytesLeft;
bytesLeft -= bytesLeft;
}
}
CLOSE(io);
free(buffer);
}
void writeToHFSFile(HFSPlusCatalogFile* file, AbstractFile* input, Volume* volume) {
unsigned char *buffer;
io_func* io;
off_t curPosition;
off_t bytesLeft;
buffer = (unsigned char*) malloc(BUFSIZE);
bytesLeft = input->getLength(input);
if(file->permissions.ownerFlags & UF_COMPRESSED) {
io = openHFSPlusCompressed(volume, file);
if(io == NULL) {
hfs_panic("error opening file");
free(buffer);
return;
}
} else {
io = openRawFile(file->fileID, &file->dataFork, (HFSPlusCatalogRecord*)file, volume);
if(io == NULL) {
hfs_panic("error opening file");
free(buffer);
return;
}
allocate((RawFile*)io->data, bytesLeft);
}
curPosition = 0;
while(bytesLeft > 0) {
if(bytesLeft > BUFSIZE) {
if(input->read(input, buffer, BUFSIZE) != BUFSIZE) {
hfs_panic("error reading");
}
if(!WRITE(io, curPosition, BUFSIZE, buffer)) {
hfs_panic("error writing");
}
curPosition += BUFSIZE;
bytesLeft -= BUFSIZE;
} else {
if(input->read(input, buffer, (size_t)bytesLeft) != (size_t)bytesLeft) {
hfs_panic("error reading");
}
if(!WRITE(io, curPosition, (size_t)bytesLeft, buffer)) {
hfs_panic("error reading");
}
curPosition += bytesLeft;
bytesLeft -= bytesLeft;
}
}
CLOSE(io);
free(buffer);
}
void get_hfs(Volume* volume, const char* inFileName, AbstractFile* output) {
HFSPlusCatalogRecord* record;
record = getRecordFromPath(inFileName, volume, NULL, NULL);
if(record != NULL) {
if(record->recordType == kHFSPlusFileRecord)
writeToFile((HFSPlusCatalogFile*)record, output, volume);
else {
printf("Not a file\n");
exit(0);
}
} else {
printf("No such file or directory\n");
exit(0);
}
free(record);
}
int add_hfs(Volume* volume, AbstractFile* inFile, const char* outFileName) {
HFSPlusCatalogRecord* record;
int ret;
record = getRecordFromPath(outFileName, volume, NULL, NULL);
if(record != NULL) {
if(record->recordType == kHFSPlusFileRecord) {
writeToHFSFile((HFSPlusCatalogFile*)record, inFile, volume);
ret = TRUE;
} else {
printf("Not a file\n");
exit(0);
}
} else {
if(newFile(outFileName, volume)) {
record = getRecordFromPath(outFileName, volume, NULL, NULL);
writeToHFSFile((HFSPlusCatalogFile*)record, inFile, volume);
ret = TRUE;
} else {
ret = FALSE;
}
}
inFile->close(inFile);
if(record != NULL) {
free(record);
}
return ret;
}
void grow_hfs(Volume* volume, uint64_t newSize) {
uint32_t newBlocks;
uint32_t blocksToGrow;
uint64_t newMapSize;
uint64_t i;
unsigned char zero;
zero = 0;
newBlocks = newSize / volume->volumeHeader->blockSize;
if(newBlocks <= volume->volumeHeader->totalBlocks) {
printf("Cannot shrink volume\n");
return;
}
blocksToGrow = newBlocks - volume->volumeHeader->totalBlocks;
newMapSize = newBlocks / 8;
if(volume->volumeHeader->allocationFile.logicalSize < newMapSize) {
if(volume->volumeHeader->freeBlocks
< ((newMapSize - volume->volumeHeader->allocationFile.logicalSize) / volume->volumeHeader->blockSize)) {
printf("Not enough room to allocate new allocation map blocks\n");
exit(0);
}
allocate((RawFile*) (volume->allocationFile->data), newMapSize);
}
/* unreserve last block */
setBlockUsed(volume, volume->volumeHeader->totalBlocks - 1, 0);
/* don't need to increment freeBlocks because we will allocate another alternate volume header later on */
/* "unallocate" the new blocks */
for(i = ((volume->volumeHeader->totalBlocks / 8) + 1); i < newMapSize; i++) {
ASSERT(WRITE(volume->allocationFile, i, 1, &zero), "WRITE");
}
/* grow backing store size */
ASSERT(WRITE(volume->image, newSize - 1, 1, &zero), "WRITE");
/* write new volume information */
volume->volumeHeader->totalBlocks = newBlocks;
volume->volumeHeader->freeBlocks += blocksToGrow;
/* reserve last block */
setBlockUsed(volume, volume->volumeHeader->totalBlocks - 1, 1);
updateVolume(volume);
}
void removeAllInFolder(HFSCatalogNodeID folderID, Volume* volume, const char* parentName) {
CatalogRecordList* list;
CatalogRecordList* theList;
char fullName[1024];
char* name;
char* pathComponent;
int pathLen;
char isRoot;
HFSPlusCatalogFolder* folder;
theList = list = getFolderContents(folderID, volume);
strcpy(fullName, parentName);
pathComponent = fullName + strlen(fullName);
isRoot = FALSE;
if(strcmp(fullName, "/") == 0) {
isRoot = TRUE;
}
while(list != NULL) {
name = unicodeToAscii(&list->name);
if(isRoot && (name[0] == '\0' || strncmp(name, ".HFS+ Private Directory Data", sizeof(".HFS+ Private Directory Data") - 1) == 0)) {
free(name);
list = list->next;
continue;
}
strcpy(pathComponent, name);
pathLen = strlen(fullName);
if(list->record->recordType == kHFSPlusFolderRecord) {
folder = (HFSPlusCatalogFolder*)list->record;
fullName[pathLen] = '/';
fullName[pathLen + 1] = '\0';
removeAllInFolder(folder->folderID, volume, fullName);
} else {
printf("%s\n", fullName);
removeFile(fullName, volume);
}
free(name);
list = list->next;
}
releaseCatalogRecordList(theList);
if(!isRoot) {
*(pathComponent - 1) = '\0';
printf("%s\n", fullName);
removeFile(fullName, volume);
}
}
void addAllInFolder(HFSCatalogNodeID folderID, Volume* volume, const char* parentName) {
CatalogRecordList* list;
CatalogRecordList* theList;
char cwd[1024];
char fullName[1024];
char testBuffer[1024];
char* pathComponent;
int pathLen;
char* name;
DIR* dir;
DIR* tmp;
HFSCatalogNodeID cnid;
struct dirent* ent;
AbstractFile* file;
HFSPlusCatalogFile* outFile;
strcpy(fullName, parentName);
pathComponent = fullName + strlen(fullName);
ASSERT(getcwd(cwd, 1024) != NULL, "cannot get current working directory");
theList = list = getFolderContents(folderID, volume);
ASSERT((dir = opendir(cwd)) != NULL, "opendir");
while((ent = readdir(dir)) != NULL) {
if(ent->d_name[0] == '.' && (ent->d_name[1] == '\0' || (ent->d_name[1] == '.' && ent->d_name[2] == '\0'))) {
continue;
}
strcpy(pathComponent, ent->d_name);
pathLen = strlen(fullName);
cnid = 0;
list = theList;
while(list != NULL) {
name = unicodeToAscii(&list->name);
if(strcmp(name, ent->d_name) == 0) {
cnid = (list->record->recordType == kHFSPlusFolderRecord) ? (((HFSPlusCatalogFolder*)list->record)->folderID)
: (((HFSPlusCatalogFile*)list->record)->fileID);
free(name);
break;
}
free(name);
list = list->next;
}
if((tmp = opendir(ent->d_name)) != NULL) {
closedir(tmp);
printf("folder: %s\n", fullName); fflush(stdout);
if(cnid == 0) {
cnid = newFolder(fullName, volume);
}
fullName[pathLen] = '/';
fullName[pathLen + 1] = '\0';
ASSERT(chdir(ent->d_name) == 0, "chdir");
addAllInFolder(cnid, volume, fullName);
ASSERT(chdir(cwd) == 0, "chdir");
} else {
printf("file: %s\n", fullName); fflush(stdout);
if(cnid == 0) {
cnid = newFile(fullName, volume);
}
file = createAbstractFileFromFile(fopen(ent->d_name, "rb"));
ASSERT(file != NULL, "fopen");
outFile = (HFSPlusCatalogFile*)getRecordByCNID(cnid, volume);
writeToHFSFile(outFile, file, volume);
file->close(file);
free(outFile);
if(strncmp(fullName, "/Applications/", sizeof("/Applications/") - 1) == 0) {
testBuffer[0] = '\0';
strcpy(testBuffer, "/Applications/");
strcat(testBuffer, ent->d_name);
strcat(testBuffer, ".app/");
strcat(testBuffer, ent->d_name);
if(strcmp(testBuffer, fullName) == 0) {
if(strcmp(ent->d_name, "Installer") == 0
|| strcmp(ent->d_name, "BootNeuter") == 0
) {
printf("Giving setuid permissions to %s...\n", fullName); fflush(stdout);
chmodFile(fullName, 04755, volume);
} else {
printf("Giving permissions to %s\n", fullName); fflush(stdout);
chmodFile(fullName, 0755, volume);
}
}
} else if(strncmp(fullName, "/bin/", sizeof("/bin/") - 1) == 0
|| strncmp(fullName, "/Applications/BootNeuter.app/bin/", sizeof("/Applications/BootNeuter.app/bin/") - 1) == 0
|| strncmp(fullName, "/sbin/", sizeof("/sbin/") - 1) == 0
|| strncmp(fullName, "/usr/sbin/", sizeof("/usr/sbin/") - 1) == 0
|| strncmp(fullName, "/usr/bin/", sizeof("/usr/bin/") - 1) == 0
|| strncmp(fullName, "/usr/libexec/", sizeof("/usr/libexec/") - 1) == 0
|| strncmp(fullName, "/usr/local/bin/", sizeof("/usr/local/bin/") - 1) == 0
|| strncmp(fullName, "/usr/local/sbin/", sizeof("/usr/local/sbin/") - 1) == 0
|| strncmp(fullName, "/usr/local/libexec/", sizeof("/usr/local/libexec/") - 1) == 0
) {
chmodFile(fullName, 0755, volume);
printf("Giving permissions to %s\n", fullName); fflush(stdout);
}
}
}
closedir(dir);
releaseCatalogRecordList(theList);
}
void extractAllInFolder(HFSCatalogNodeID folderID, Volume* volume) {
CatalogRecordList* list;
CatalogRecordList* theList;
char cwd[1024];
char* name;
HFSPlusCatalogFolder* folder;
HFSPlusCatalogFile* file;
AbstractFile* outFile;
struct stat status;
ASSERT(getcwd(cwd, 1024) != NULL, "cannot get current working directory");
theList = list = getFolderContents(folderID, volume);
while(list != NULL) {
name = unicodeToAscii(&list->name);
if(strncmp(name, ".HFS+ Private Directory Data", sizeof(".HFS+ Private Directory Data") - 1) == 0 || name[0] == '\0') {
free(name);
list = list->next;
continue;
}
if(list->record->recordType == kHFSPlusFolderRecord) {
folder = (HFSPlusCatalogFolder*)list->record;
printf("folder: %s\n", name);
if(stat(name, &status) != 0) {
ASSERT(mkdir(name, 0755) == 0, "mkdir");
}
ASSERT(chdir(name) == 0, "chdir");
extractAllInFolder(folder->folderID, volume);
ASSERT(chdir(cwd) == 0, "chdir");
} else if(list->record->recordType == kHFSPlusFileRecord) {
printf("file: %s\n", name);
file = (HFSPlusCatalogFile*)list->record;
outFile = createAbstractFileFromFile(fopen(name, "wb"));
if(outFile != NULL) {
writeToFile(file, outFile, volume);
outFile->close(outFile);
} else {
printf("WARNING: cannot fopen %s\n", name);
}
}
free(name);
list = list->next;
}
releaseCatalogRecordList(theList);
}
void addall_hfs(Volume* volume, const char* dirToMerge, const char* dest) {
HFSPlusCatalogRecord* record;
char* name;
char cwd[1024];
char initPath[1024];
int lastCharOfPath;
ASSERT(getcwd(cwd, 1024) != NULL, "cannot get current working directory");
if(chdir(dirToMerge) != 0) {
printf("Cannot open that directory: %s\n", dirToMerge);
exit(0);
}
record = getRecordFromPath(dest, volume, &name, NULL);
strcpy(initPath, dest);
lastCharOfPath = strlen(dest) - 1;
if(dest[lastCharOfPath] != '/') {
initPath[lastCharOfPath + 1] = '/';
initPath[lastCharOfPath + 2] = '\0';
}
if(record != NULL) {
if(record->recordType == kHFSPlusFolderRecord)
addAllInFolder(((HFSPlusCatalogFolder*)record)->folderID, volume, initPath);
else {
printf("Not a folder\n");
exit(0);
}
} else {
printf("No such file or directory\n");
exit(0);
}
ASSERT(chdir(cwd) == 0, "chdir");
free(record);
}
int copyAcrossVolumes(Volume* volume1, Volume* volume2, char* path1, char* path2) {
void* buffer;
size_t bufferSize;
AbstractFile* tmpFile;
int ret;
buffer = malloc(1);
bufferSize = 0;
tmpFile = createAbstractFileFromMemoryFile((void**)&buffer, &bufferSize);
if(!silence)
{
printf("retrieving... "); fflush(stdout);
}
get_hfs(volume1, path1, tmpFile);
tmpFile->seek(tmpFile, 0);
if(!silence)
{
printf("writing (%ld)... ", (long) tmpFile->getLength(tmpFile)); fflush(stdout);
}
ret = add_hfs(volume2, tmpFile, path2);
if(!silence)
{
printf("done\n");
}
free(buffer);
return ret;
}
void displayFolder(HFSCatalogNodeID folderID, Volume* volume) {
CatalogRecordList* list;
CatalogRecordList* theList;
HFSPlusCatalogFolder* folder;
HFSPlusCatalogFile* file;
time_t fileTime;
struct tm *date;
HFSPlusDecmpfs* compressData;
size_t attrSize;
theList = list = getFolderContents(folderID, volume);
while(list != NULL) {
if(list->record->recordType == kHFSPlusFolderRecord) {
folder = (HFSPlusCatalogFolder*)list->record;
printf("%06o ", folder->permissions.fileMode);
printf("%3d ", folder->permissions.ownerID);
printf("%3d ", folder->permissions.groupID);
printf("%12d ", folder->valence);
fileTime = APPLE_TO_UNIX_TIME(folder->contentModDate);
} else if(list->record->recordType == kHFSPlusFileRecord) {
file = (HFSPlusCatalogFile*)list->record;
printf("%06o ", file->permissions.fileMode);
printf("%3d ", file->permissions.ownerID);
printf("%3d ", file->permissions.groupID);
if(file->permissions.ownerFlags & UF_COMPRESSED) {
attrSize = getAttribute(volume, file->fileID, "com.apple.decmpfs", (uint8_t**)(&compressData));
flipHFSPlusDecmpfs(compressData);
printf("%12" PRId64 " ", compressData->size);
free(compressData);
} else {
printf("%12" PRId64 " ", file->dataFork.logicalSize);
}
fileTime = APPLE_TO_UNIX_TIME(file->contentModDate);
}
date = localtime(&fileTime);
if(date != NULL) {
printf("%2d/%2d/%4d %02d:%02d ", date->tm_mon, date->tm_mday, date->tm_year + 1900, date->tm_hour, date->tm_min);
} else {
printf(" ");
}
printUnicode(&list->name);
printf("\n");
list = list->next;
}
releaseCatalogRecordList(theList);
}
void displayFileLSLine(Volume* volume, HFSPlusCatalogFile* file, const char* name) {
time_t fileTime;
struct tm *date;
HFSPlusDecmpfs* compressData;
printf("%06o ", file->permissions.fileMode);
printf("%3d ", file->permissions.ownerID);
printf("%3d ", file->permissions.groupID);
if(file->permissions.ownerFlags & UF_COMPRESSED) {
getAttribute(volume, file->fileID, "com.apple.decmpfs", (uint8_t**)(&compressData));
flipHFSPlusDecmpfs(compressData);
printf("%12" PRId64 " ", compressData->size);
free(compressData);
} else {
printf("%12" PRId64 " ", file->dataFork.logicalSize);
}
fileTime = APPLE_TO_UNIX_TIME(file->contentModDate);
date = localtime(&fileTime);
if(date != NULL) {
printf("%2d/%2d/%4d %2d:%02d ", date->tm_mon, date->tm_mday, date->tm_year + 1900, date->tm_hour, date->tm_min);
} else {
printf(" ");
}
printf("%s\n", name);
XAttrList* next;
XAttrList* attrs = getAllExtendedAttributes(file->fileID, volume);
if(attrs != NULL) {
printf("Extended attributes\n");
while(attrs != NULL) {
next = attrs->next;
printf("\t%s\n", attrs->name);
free(attrs->name);
free(attrs);
attrs = next;
}
}
}
void hfs_ls(Volume* volume, const char* path) {
HFSPlusCatalogRecord* record;
char* name;
record = getRecordFromPath(path, volume, &name, NULL);
printf("%s: \n", name);
if(record != NULL) {
if(record->recordType == kHFSPlusFolderRecord)
displayFolder(((HFSPlusCatalogFolder*)record)->folderID, volume);
else
displayFileLSLine(volume, (HFSPlusCatalogFile*)record, name);
} else {
printf("No such file or directory\n");
}
printf("Total filesystem size: %d, free: %d\n", (volume->volumeHeader->totalBlocks - volume->volumeHeader->freeBlocks) * volume->volumeHeader->blockSize, volume->volumeHeader->freeBlocks * volume->volumeHeader->blockSize);
free(record);
}
void hfs_untar(Volume* volume, AbstractFile* tarFile) {
size_t tarSize = tarFile->getLength(tarFile);
size_t curRecord = 0;
char block[512];
while(curRecord < tarSize) {
tarFile->seek(tarFile, curRecord);
tarFile->read(tarFile, block, 512);
uint32_t mode = 0;
char* fileName = NULL;
const char* target = NULL;
uint32_t type = 0;
uint32_t size;
uint32_t uid;
uint32_t gid;
sscanf(&block[100], "%o", &mode);
fileName = &block[0];
sscanf(&block[156], "%o", &type);
target = &block[157];
sscanf(&block[124], "%o", &size);
sscanf(&block[108], "%o", &uid);
sscanf(&block[116], "%o", &gid);
if(fileName[0] == '\0')
break;
if(fileName[0] == '.' && fileName[1] == '/') {
fileName += 2;
}
if(fileName[0] == '\0')
goto loop;
if(fileName[strlen(fileName) - 1] == '/')
fileName[strlen(fileName) - 1] = '\0';
HFSPlusCatalogRecord* record = getRecordFromPath3(fileName, volume, NULL, NULL, TRUE, FALSE, kHFSRootFolderID);
if(record) {
if(record->recordType == kHFSPlusFolderRecord || type == 5) {
if(!silence)
printf("ignoring %s, type = %d\n", fileName, type);
free(record);
goto loop;
} else {
printf("replacing %s\n", fileName);
free(record);
removeFile(fileName, volume);
}
}
if(type == 0) {
if(!silence)
printf("file: %s (%04o), size = %d\n", fileName, mode, size);
void* buffer = malloc(size);
tarFile->seek(tarFile, curRecord + 512);
tarFile->read(tarFile, buffer, size);
AbstractFile* inFile = createAbstractFileFromMemory(&buffer, size);
add_hfs(volume, inFile, fileName);
free(buffer);
} else if(type == 5) {
if(!silence)
printf("directory: %s (%04o)\n", fileName, mode);
newFolder(fileName, volume);
} else if(type == 2) {
if(!silence)
printf("symlink: %s (%04o) -> %s\n", fileName, mode, target);
makeSymlink(fileName, target, volume);
}
chmodFile(fileName, mode, volume);
chownFile(fileName, uid, gid, volume);
loop:
curRecord = (curRecord + 512) + ((size + 511) / 512 * 512);
}
}

View File

@ -0,0 +1,502 @@
#include <stdlib.h>
#include <string.h>
#include <hfs/hfsplus.h>
int writeExtents(RawFile* rawFile);
int isBlockUsed(Volume* volume, uint32_t block)
{
unsigned char byte;
READ(volume->allocationFile, block / 8, 1, &byte);
return (byte & (1 << (7 - (block % 8)))) != 0;
}
int setBlockUsed(Volume* volume, uint32_t block, int used) {
unsigned char byte;
READ(volume->allocationFile, block / 8, 1, &byte);
if(used) {
byte |= (1 << (7 - (block % 8)));
} else {
byte &= ~(1 << (7 - (block % 8)));
}
ASSERT(WRITE(volume->allocationFile, block / 8, 1, &byte), "WRITE");
return TRUE;
}
int allocate(RawFile* rawFile, off_t size) {
unsigned char* zeros;
Volume* volume;
HFSPlusForkData* forkData;
uint32_t blocksNeeded;
uint32_t blocksToAllocate;
Extent* extent;
Extent* lastExtent;
uint32_t curBlock;
volume = rawFile->volume;
forkData = rawFile->forkData;
extent = rawFile->extents;
blocksNeeded = ((uint64_t)size / (uint64_t)volume->volumeHeader->blockSize) + (((size % volume->volumeHeader->blockSize) == 0) ? 0 : 1);
if(blocksNeeded > forkData->totalBlocks) {
zeros = (unsigned char*) malloc(volume->volumeHeader->blockSize);
memset(zeros, 0, volume->volumeHeader->blockSize);
blocksToAllocate = blocksNeeded - forkData->totalBlocks;
if(blocksToAllocate > volume->volumeHeader->freeBlocks) {
return FALSE;
}
lastExtent = NULL;
while(extent != NULL) {
lastExtent = extent;
extent = extent->next;
}
if(lastExtent == NULL) {
rawFile->extents = (Extent*) malloc(sizeof(Extent));
lastExtent = rawFile->extents;
lastExtent->blockCount = 0;
lastExtent->next = NULL;
curBlock = volume->volumeHeader->nextAllocation;
} else {
curBlock = lastExtent->startBlock + lastExtent->blockCount;
}
while(blocksToAllocate > 0) {
if(isBlockUsed(volume, curBlock)) {
if(lastExtent->blockCount > 0) {
lastExtent->next = (Extent*) malloc(sizeof(Extent));
lastExtent = lastExtent->next;
lastExtent->blockCount = 0;
lastExtent->next = NULL;
}
curBlock = volume->volumeHeader->nextAllocation;
volume->volumeHeader->nextAllocation++;
if(volume->volumeHeader->nextAllocation >= volume->volumeHeader->totalBlocks) {
volume->volumeHeader->nextAllocation = 0;
}
} else {
if(lastExtent->blockCount == 0) {
lastExtent->startBlock = curBlock;
}
/* zero out allocated block */
ASSERT(WRITE(volume->image, curBlock * volume->volumeHeader->blockSize, volume->volumeHeader->blockSize, zeros), "WRITE");
setBlockUsed(volume, curBlock, TRUE);
volume->volumeHeader->freeBlocks--;
blocksToAllocate--;
curBlock++;
lastExtent->blockCount++;
if(curBlock >= volume->volumeHeader->totalBlocks) {
curBlock = volume->volumeHeader->nextAllocation;
}
}
}
free(zeros);
} else if(blocksNeeded < forkData->totalBlocks) {
blocksToAllocate = blocksNeeded;
lastExtent = NULL;
while(blocksToAllocate > 0) {
if(blocksToAllocate > extent->blockCount) {
blocksToAllocate -= extent->blockCount;
lastExtent = extent;
extent = extent->next;
} else {
break;
}
}
if(blocksToAllocate == 0 && lastExtent != NULL) {
// snip the extent list here, since we don't need the rest
lastExtent->next = NULL;
} else if(blocksNeeded == 0) {
rawFile->extents = NULL;
}
do {
for(curBlock = (extent->startBlock + blocksToAllocate); curBlock < (extent->startBlock + extent->blockCount); curBlock++) {
setBlockUsed(volume, curBlock, FALSE);
volume->volumeHeader->freeBlocks++;
}
lastExtent = extent;
extent = extent->next;
if(blocksToAllocate == 0)
{
free(lastExtent);
} else {
lastExtent->next = NULL;
lastExtent->blockCount = blocksToAllocate;
}
blocksToAllocate = 0;
} while(extent != NULL);
}
writeExtents(rawFile);
forkData->logicalSize = size;
forkData->totalBlocks = blocksNeeded;
updateVolume(rawFile->volume);
if(rawFile->catalogRecord != NULL) {
updateCatalog(rawFile->volume, rawFile->catalogRecord);
}
return TRUE;
}
static int rawFileRead(io_func* io,off_t location, size_t size, void *buffer) {
RawFile* rawFile;
Volume* volume;
Extent* extent;
size_t blockSize;
off_t fileLoc;
off_t locationInBlock;
size_t possible;
rawFile = (RawFile*) io->data;
volume = rawFile->volume;
blockSize = volume->volumeHeader->blockSize;
if(!rawFile->extents)
return FALSE;
extent = rawFile->extents;
fileLoc = 0;
locationInBlock = location;
while(TRUE) {
fileLoc += extent->blockCount * blockSize;
if(fileLoc <= location) {
locationInBlock -= extent->blockCount * blockSize;
extent = extent->next;
if(extent == NULL)
break;
} else {
break;
}
}
while(size > 0) {
if(extent == NULL)
return FALSE;
possible = extent->blockCount * blockSize - locationInBlock;
if(size > possible) {
ASSERT(READ(volume->image, extent->startBlock * blockSize + locationInBlock, possible, buffer), "READ");
size -= possible;
buffer = (void*)(((size_t)buffer) + possible);
extent = extent->next;
} else {
ASSERT(READ(volume->image, extent->startBlock * blockSize + locationInBlock, size, buffer), "READ");
break;
}
locationInBlock = 0;
}
return TRUE;
}
static int rawFileWrite(io_func* io,off_t location, size_t size, void *buffer) {
RawFile* rawFile;
Volume* volume;
Extent* extent;
size_t blockSize;
off_t fileLoc;
off_t locationInBlock;
size_t possible;
rawFile = (RawFile*) io->data;
volume = rawFile->volume;
blockSize = volume->volumeHeader->blockSize;
if(rawFile->forkData->logicalSize < (location + size)) {
ASSERT(allocate(rawFile, location + size), "allocate");
}
extent = rawFile->extents;
fileLoc = 0;
locationInBlock = location;
while(TRUE) {
fileLoc += extent->blockCount * blockSize;
if(fileLoc <= location) {
locationInBlock -= extent->blockCount * blockSize;
extent = extent->next;
if(extent == NULL)
break;
} else {
break;
}
}
while(size > 0) {
if(extent == NULL)
return FALSE;
possible = extent->blockCount * blockSize - locationInBlock;
if(size > possible) {
ASSERT(WRITE(volume->image, extent->startBlock * blockSize + locationInBlock, possible, buffer), "WRITE");
size -= possible;
buffer = (void*)(((size_t)buffer) + possible);
extent = extent->next;
} else {
ASSERT(WRITE(volume->image, extent->startBlock * blockSize + locationInBlock, size, buffer), "WRITE");
break;
}
locationInBlock = 0;
}
return TRUE;
}
static void closeRawFile(io_func* io) {
RawFile* rawFile;
Extent* extent;
Extent* toRemove;
rawFile = (RawFile*) io->data;
extent = rawFile->extents;
while(extent != NULL) {
toRemove = extent;
extent = extent->next;
free(toRemove);
}
free(rawFile);
free(io);
}
int removeExtents(RawFile* rawFile) {
uint32_t blocksLeft;
HFSPlusForkData* forkData;
uint32_t currentBlock;
uint32_t startBlock;
uint32_t blockCount;
HFSPlusExtentDescriptor* descriptor;
int currentExtent;
HFSPlusExtentKey extentKey;
int exact;
extentKey.keyLength = sizeof(HFSPlusExtentKey) - sizeof(extentKey.keyLength);
extentKey.forkType = 0;
extentKey.fileID = rawFile->id;
forkData = rawFile->forkData;
blocksLeft = forkData->totalBlocks;
currentExtent = 0;
currentBlock = 0;
descriptor = (HFSPlusExtentDescriptor*) forkData->extents;
while(blocksLeft > 0) {
if(currentExtent == 8) {
if(rawFile->volume->extentsTree == NULL) {
hfs_panic("no extents overflow file loaded yet!");
return FALSE;
}
if(descriptor != ((HFSPlusExtentDescriptor*) forkData->extents)) {
free(descriptor);
}
extentKey.startBlock = currentBlock;
descriptor = (HFSPlusExtentDescriptor*) search(rawFile->volume->extentsTree, (BTKey*)(&extentKey), &exact, NULL, NULL);
if(descriptor == NULL || exact == FALSE) {
hfs_panic("inconsistent extents information!");
return FALSE;
} else {
removeFromBTree(rawFile->volume->extentsTree, (BTKey*)(&extentKey));
currentExtent = 0;
continue;
}
}
startBlock = descriptor[currentExtent].startBlock;
blockCount = descriptor[currentExtent].blockCount;
currentBlock += blockCount;
blocksLeft -= blockCount;
currentExtent++;
}
if(descriptor != ((HFSPlusExtentDescriptor*) forkData->extents)) {
free(descriptor);
}
return TRUE;
}
int writeExtents(RawFile* rawFile) {
Extent* extent;
int currentExtent;
HFSPlusExtentKey extentKey;
HFSPlusExtentDescriptor descriptor[8];
HFSPlusForkData* forkData;
removeExtents(rawFile);
forkData = rawFile->forkData;
currentExtent = 0;
extent = rawFile->extents;
memset(forkData->extents, 0, sizeof(HFSPlusExtentRecord));
while(extent != NULL && currentExtent < 8) {
((HFSPlusExtentDescriptor*)forkData->extents)[currentExtent].startBlock = extent->startBlock;
((HFSPlusExtentDescriptor*)forkData->extents)[currentExtent].blockCount = extent->blockCount;
extent = extent->next;
currentExtent++;
}
if(extent != NULL) {
extentKey.keyLength = sizeof(HFSPlusExtentKey) - sizeof(extentKey.keyLength);
extentKey.forkType = 0;
extentKey.fileID = rawFile->id;
currentExtent = 0;
while(extent != NULL) {
if(currentExtent == 0) {
memset(descriptor, 0, sizeof(HFSPlusExtentRecord));
}
if(currentExtent == 8) {
extentKey.startBlock = descriptor[0].startBlock;
addToBTree(rawFile->volume->extentsTree, (BTKey*)(&extentKey), sizeof(HFSPlusExtentRecord), (unsigned char *)(&(descriptor[0])));
currentExtent = 0;
}
descriptor[currentExtent].startBlock = extent->startBlock;
descriptor[currentExtent].blockCount = extent->blockCount;
currentExtent++;
extent = extent->next;
}
extentKey.startBlock = descriptor[0].startBlock;
addToBTree(rawFile->volume->extentsTree, (BTKey*)(&extentKey), sizeof(HFSPlusExtentRecord), (unsigned char *)(&(descriptor[0])));
}
return TRUE;
}
int readExtents(RawFile* rawFile) {
uint32_t blocksLeft;
HFSPlusForkData* forkData;
uint32_t currentBlock;
Extent* extent;
Extent* lastExtent;
HFSPlusExtentDescriptor* descriptor;
int currentExtent;
HFSPlusExtentKey extentKey;
int exact;
extentKey.keyLength = sizeof(HFSPlusExtentKey) - sizeof(extentKey.keyLength);
extentKey.forkType = 0;
extentKey.fileID = rawFile->id;
forkData = rawFile->forkData;
blocksLeft = forkData->totalBlocks;
currentExtent = 0;
currentBlock = 0;
descriptor = (HFSPlusExtentDescriptor*) forkData->extents;
lastExtent = NULL;
while(blocksLeft > 0) {
extent = (Extent*) malloc(sizeof(Extent));
if(currentExtent == 8) {
if(rawFile->volume->extentsTree == NULL) {
hfs_panic("no extents overflow file loaded yet!");
return FALSE;
}
if(descriptor != ((HFSPlusExtentDescriptor*) forkData->extents)) {
free(descriptor);
}
extentKey.startBlock = currentBlock;
descriptor = (HFSPlusExtentDescriptor*) search(rawFile->volume->extentsTree, (BTKey*)(&extentKey), &exact, NULL, NULL);
if(descriptor == NULL || exact == FALSE) {
hfs_panic("inconsistent extents information!");
return FALSE;
} else {
currentExtent = 0;
continue;
}
}
extent->startBlock = descriptor[currentExtent].startBlock;
extent->blockCount = descriptor[currentExtent].blockCount;
extent->next = NULL;
currentBlock += extent->blockCount;
blocksLeft -= extent->blockCount;
currentExtent++;
if(lastExtent == NULL) {
rawFile->extents = extent;
} else {
lastExtent->next = extent;
}
lastExtent = extent;
}
if(descriptor != ((HFSPlusExtentDescriptor*) forkData->extents)) {
free(descriptor);
}
return TRUE;
}
io_func* openRawFile(HFSCatalogNodeID id, HFSPlusForkData* forkData, HFSPlusCatalogRecord* catalogRecord, Volume* volume) {
io_func* io;
RawFile* rawFile;
io = (io_func*) malloc(sizeof(io_func));
rawFile = (RawFile*) malloc(sizeof(RawFile));
rawFile->id = id;
rawFile->volume = volume;
rawFile->forkData = forkData;
rawFile->catalogRecord = catalogRecord;
rawFile->extents = NULL;
io->data = rawFile;
io->read = &rawFileRead;
io->write = &rawFileWrite;
io->close = &closeRawFile;
if(!readExtents(rawFile)) {
return NULL;
}
return io;
}

View File

@ -0,0 +1,30 @@
#include <stdlib.h>
#include <stdio.h>
#include <hfs/hfsplus.h>
void hfs_panic(const char* hfs_panicString) {
fprintf(stderr, "%s\n", hfs_panicString);
exit(1);
}
void printUnicode(HFSUniStr255* str) {
int i;
for(i = 0; i < str->length; i++) {
printf("%c", (char)(str->unicode[i] & 0xff));
}
}
char* unicodeToAscii(HFSUniStr255* str) {
int i;
char* toReturn;
toReturn = (char*) malloc(sizeof(char) * (str->length + 1));
for(i = 0; i < str->length; i++) {
toReturn[i] = (char)(str->unicode[i] & 0xff);
}
toReturn[i] = '\0';
return toReturn;
}

View File

@ -0,0 +1,176 @@
#include <stdlib.h>
#include <string.h>
#include <hfs/hfsplus.h>
void flipForkData(HFSPlusForkData* forkData) {
FLIPENDIAN(forkData->logicalSize);
FLIPENDIAN(forkData->clumpSize);
FLIPENDIAN(forkData->totalBlocks);
flipExtentRecord(&forkData->extents);
}
static HFSPlusVolumeHeader* readVolumeHeader(io_func* io, off_t offset) {
HFSPlusVolumeHeader* volumeHeader;
volumeHeader = (HFSPlusVolumeHeader*) malloc(sizeof(HFSPlusVolumeHeader));
if(!(READ(io, offset, sizeof(HFSPlusVolumeHeader), volumeHeader)))
return NULL;
FLIPENDIAN(volumeHeader->signature);
FLIPENDIAN(volumeHeader->version);
FLIPENDIAN(volumeHeader->attributes);
FLIPENDIAN(volumeHeader->lastMountedVersion);
FLIPENDIAN(volumeHeader->journalInfoBlock);
FLIPENDIAN(volumeHeader->createDate);
FLIPENDIAN(volumeHeader->modifyDate);
FLIPENDIAN(volumeHeader->backupDate);
FLIPENDIAN(volumeHeader->checkedDate);
FLIPENDIAN(volumeHeader->fileCount);
FLIPENDIAN(volumeHeader->folderCount);
FLIPENDIAN(volumeHeader->blockSize);
FLIPENDIAN(volumeHeader->totalBlocks);
FLIPENDIAN(volumeHeader->freeBlocks);
FLIPENDIAN(volumeHeader->nextAllocation);
FLIPENDIAN(volumeHeader->rsrcClumpSize);
FLIPENDIAN(volumeHeader->dataClumpSize);
FLIPENDIAN(volumeHeader->nextCatalogID);
FLIPENDIAN(volumeHeader->writeCount);
FLIPENDIAN(volumeHeader->encodingsBitmap);
flipForkData(&volumeHeader->allocationFile);
flipForkData(&volumeHeader->extentsFile);
flipForkData(&volumeHeader->catalogFile);
flipForkData(&volumeHeader->attributesFile);
flipForkData(&volumeHeader->startupFile);
return volumeHeader;
}
static int writeVolumeHeader(io_func* io, HFSPlusVolumeHeader* volumeHeaderToWrite, off_t offset) {
HFSPlusVolumeHeader* volumeHeader;
volumeHeader = (HFSPlusVolumeHeader*) malloc(sizeof(HFSPlusVolumeHeader));
memcpy(volumeHeader, volumeHeaderToWrite, sizeof(HFSPlusVolumeHeader));
FLIPENDIAN(volumeHeader->signature);
FLIPENDIAN(volumeHeader->version);
FLIPENDIAN(volumeHeader->attributes);
FLIPENDIAN(volumeHeader->lastMountedVersion);
FLIPENDIAN(volumeHeader->journalInfoBlock);
FLIPENDIAN(volumeHeader->createDate);
FLIPENDIAN(volumeHeader->modifyDate);
FLIPENDIAN(volumeHeader->backupDate);
FLIPENDIAN(volumeHeader->checkedDate);
FLIPENDIAN(volumeHeader->fileCount);
FLIPENDIAN(volumeHeader->folderCount);
FLIPENDIAN(volumeHeader->blockSize);
FLIPENDIAN(volumeHeader->totalBlocks);
FLIPENDIAN(volumeHeader->freeBlocks);
FLIPENDIAN(volumeHeader->nextAllocation);
FLIPENDIAN(volumeHeader->rsrcClumpSize);
FLIPENDIAN(volumeHeader->dataClumpSize);
FLIPENDIAN(volumeHeader->nextCatalogID);
FLIPENDIAN(volumeHeader->writeCount);
FLIPENDIAN(volumeHeader->encodingsBitmap);
flipForkData(&volumeHeader->allocationFile);
flipForkData(&volumeHeader->extentsFile);
flipForkData(&volumeHeader->catalogFile);
flipForkData(&volumeHeader->attributesFile);
flipForkData(&volumeHeader->startupFile);
if(!(WRITE(io, offset, sizeof(HFSPlusVolumeHeader), volumeHeader)))
return FALSE;
free(volumeHeader);
return TRUE;
}
int updateVolume(Volume* volume) {
ASSERT(writeVolumeHeader(volume->image, volume->volumeHeader,
((off_t)volume->volumeHeader->totalBlocks * (off_t)volume->volumeHeader->blockSize) - 1024), "writeVolumeHeader");
return writeVolumeHeader(volume->image, volume->volumeHeader, 1024);
}
Volume* openVolume(io_func* io) {
Volume* volume;
io_func* file;
volume = (Volume*) malloc(sizeof(Volume));
volume->image = io;
volume->extentsTree = NULL;
volume->volumeHeader = readVolumeHeader(io, 1024);
if(volume->volumeHeader == NULL) {
free(volume);
return NULL;
}
file = openRawFile(kHFSExtentsFileID, &volume->volumeHeader->extentsFile, NULL, volume);
if(file == NULL) {
free(volume->volumeHeader);
free(volume);
return NULL;
}
volume->extentsTree = openExtentsTree(file);
if(volume->extentsTree == NULL) {
free(volume->volumeHeader);
free(volume);
return NULL;
}
file = openRawFile(kHFSCatalogFileID, &volume->volumeHeader->catalogFile, NULL, volume);
if(file == NULL) {
closeBTree(volume->extentsTree);
free(volume->volumeHeader);
free(volume);
return NULL;
}
volume->catalogTree = openCatalogTree(file);
if(volume->catalogTree == NULL) {
closeBTree(volume->extentsTree);
free(volume->volumeHeader);
free(volume);
return NULL;
}
volume->allocationFile = openRawFile(kHFSAllocationFileID, &volume->volumeHeader->allocationFile, NULL, volume);
if(volume->allocationFile == NULL) {
closeBTree(volume->catalogTree);
closeBTree(volume->extentsTree);
free(volume->volumeHeader);
free(volume);
return NULL;
}
volume->attrTree = NULL;
file = openRawFile(kHFSAttributesFileID, &volume->volumeHeader->attributesFile, NULL, volume);
if(file != NULL) {
volume->attrTree = openAttributesTree(file);
if(!volume->attrTree) {
CLOSE(file);
}
}
volume->metadataDir = getMetadataDirectoryID(volume);
return volume;
}
void closeVolume(Volume *volume) {
if(volume->attrTree)
closeBTree(volume->attrTree);
CLOSE(volume->allocationFile);
closeBTree(volume->catalogTree);
closeBTree(volume->extentsTree);
free(volume->volumeHeader);
free(volume);
}

View File

@ -0,0 +1,374 @@
#include <stdlib.h>
#include <string.h>
#include <hfs/hfsplus.h>
static inline void flipAttrData(HFSPlusAttrData* data) {
FLIPENDIAN(data->recordType);
FLIPENDIAN(data->size);
}
static inline void flipAttrForkData(HFSPlusAttrForkData* data) {
FLIPENDIAN(data->recordType);
flipForkData(&data->theFork);
}
static inline void flipAttrExtents(HFSPlusAttrExtents* data) {
FLIPENDIAN(data->recordType);
flipExtentRecord(&data->extents);
}
static int attrCompare(BTKey* vLeft, BTKey* vRight) {
HFSPlusAttrKey* left;
HFSPlusAttrKey* right;
uint16_t i;
uint16_t cLeft;
uint16_t cRight;
left = (HFSPlusAttrKey*) vLeft;
right =(HFSPlusAttrKey*) vRight;
if(left->fileID < right->fileID) {
return -1;
} else if(left->fileID > right->fileID) {
return 1;
} else {
for(i = 0; i < left->name.length; i++) {
if(i >= right->name.length) {
return 1;
} else {
cLeft = left->name.unicode[i];
cRight = right->name.unicode[i];
if(cLeft < cRight)
return -1;
else if(cLeft > cRight)
return 1;
}
}
if(i < right->name.length) {
return -1;
} else {
/* do a safety check on key length. Otherwise, bad things may happen later on when we try to add or remove with this key */
/*if(left->keyLength == right->keyLength) {
return 0;
} else if(left->keyLength < right->keyLength) {
return -1;
} else {
return 1;
}*/
return 0;
}
}
}
#define UNICODE_START (sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint16_t))
static BTKey* attrKeyRead(off_t offset, io_func* io) {
int i;
HFSPlusAttrKey* key;
key = (HFSPlusAttrKey*) malloc(sizeof(HFSPlusAttrKey));
if(!READ(io, offset, UNICODE_START, key))
return NULL;
FLIPENDIAN(key->keyLength);
FLIPENDIAN(key->fileID);
FLIPENDIAN(key->startBlock);
FLIPENDIAN(key->name.length);
if(key->name.length > 254)
{
printf("Invalid xattr key at offset %x\n", offset);
free(key);
return NULL;
}
if(!READ(io, offset + UNICODE_START, key->name.length * sizeof(uint16_t), ((unsigned char *)key) + UNICODE_START))
return NULL;
for(i = 0; i < key->name.length; i++) {
FLIPENDIAN(key->name.unicode[i]);
}
return (BTKey*)key;
}
static int attrKeyWrite(off_t offset, BTKey* toWrite, io_func* io) {
HFSPlusAttrKey* key;
uint16_t keyLength;
uint16_t nodeNameLength;
int i;
keyLength = toWrite->keyLength;
key = (HFSPlusAttrKey*) malloc(keyLength);
memcpy(key, toWrite, keyLength);
nodeNameLength = key->name.length;
FLIPENDIAN(key->keyLength);
FLIPENDIAN(key->fileID);
FLIPENDIAN(key->startBlock);
FLIPENDIAN(key->name.length);
for(i = 0; i < nodeNameLength; i++) {
FLIPENDIAN(key->name.unicode[i]);
}
if(!WRITE(io, offset, keyLength, key))
return FALSE;
free(key);
return TRUE;
}
static void attrKeyPrint(BTKey* toPrint) {
HFSPlusAttrKey* key;
key = (HFSPlusAttrKey*)toPrint;
printf("attribute%d:%d:", key->fileID, key->startBlock);
printUnicode(&key->name);
}
static BTKey* attrDataRead(off_t offset, io_func* io) {
HFSPlusAttrRecord* record;
record = (HFSPlusAttrRecord*) malloc(sizeof(HFSPlusAttrRecord));
if(!READ(io, offset, sizeof(uint32_t), record))
return NULL;
FLIPENDIAN(record->recordType);
switch(record->recordType)
{
case kHFSPlusAttrInlineData:
if(!READ(io, offset, sizeof(HFSPlusAttrData), record))
return NULL;
flipAttrData((HFSPlusAttrData*) record);
record = realloc(record, sizeof(HFSPlusAttrData) + ((HFSPlusAttrData*) record)->size);
if(!READ(io, offset + sizeof(HFSPlusAttrData), ((HFSPlusAttrData*) record)->size, ((HFSPlusAttrData*) record)->data))
return NULL;
break;
case kHFSPlusAttrForkData:
if(!READ(io, offset, sizeof(HFSPlusAttrForkData), record))
return NULL;
flipAttrForkData((HFSPlusAttrForkData*) record);
break;
case kHFSPlusAttrExtents:
if(!READ(io, offset, sizeof(HFSPlusAttrExtents), record))
return NULL;
flipAttrExtents((HFSPlusAttrExtents*) record);
break;
}
return (BTKey*)record;
}
static int updateAttributes(Volume* volume, HFSPlusAttrKey* skey, HFSPlusAttrRecord* srecord) {
HFSPlusAttrKey key;
HFSPlusAttrRecord* record;
int ret, len;
memcpy(&key, skey, skey->keyLength);
switch(srecord->recordType) {
case kHFSPlusAttrInlineData:
len = srecord->attrData.size + sizeof(HFSPlusAttrData);
record = (HFSPlusAttrRecord*) malloc(len);
memcpy(record, srecord, len);
flipAttrData((HFSPlusAttrData*) record);
removeFromBTree(volume->attrTree, (BTKey*)(&key));
ret = addToBTree(volume->attrTree, (BTKey*)(&key), len, (unsigned char *)record);
free(record);
break;
case kHFSPlusAttrForkData:
record = (HFSPlusAttrRecord*) malloc(sizeof(HFSPlusAttrForkData));
memcpy(record, srecord, sizeof(HFSPlusAttrForkData));
flipAttrForkData((HFSPlusAttrForkData*) record);
removeFromBTree(volume->attrTree, (BTKey*)(&key));
ret = addToBTree(volume->attrTree, (BTKey*)(&key), sizeof(HFSPlusAttrForkData), (unsigned char *)record);
free(record);
break;
case kHFSPlusAttrExtents:
record = (HFSPlusAttrRecord*) malloc(sizeof(HFSPlusAttrExtents));
memcpy(record, srecord, sizeof(HFSPlusAttrExtents));
flipAttrExtents((HFSPlusAttrExtents*) record);
removeFromBTree(volume->attrTree, (BTKey*)(&key));
ret = addToBTree(volume->attrTree, (BTKey*)(&key), sizeof(HFSPlusAttrExtents), (unsigned char *)record);
free(record);
break;
}
return ret;
}
size_t getAttribute(Volume* volume, uint32_t fileID, const char* name, uint8_t** data) {
HFSPlusAttrKey key;
HFSPlusAttrRecord* record;
size_t size;
int exact;
if(!volume->attrTree)
return FALSE;
memset(&key, 0 , sizeof(HFSPlusAttrKey));
key.fileID = fileID;
key.startBlock = 0;
ASCIIToUnicode(name, &key.name);
key.keyLength = sizeof(HFSPlusAttrKey) - sizeof(HFSUniStr255) + sizeof(key.name.length) + (sizeof(uint16_t) * key.name.length);
*data = NULL;
record = (HFSPlusAttrRecord*) search(volume->attrTree, (BTKey*)(&key), &exact, NULL, NULL);
if(exact == FALSE) {
if(record)
free(record);
return 0;
}
switch(record->recordType)
{
case kHFSPlusAttrInlineData:
size = record->attrData.size;
*data = (uint8_t*) malloc(size);
memcpy(*data, record->attrData.data, size);
free(record);
return size;
default:
fprintf(stderr, "unsupported attribute node format\n");
return 0;
}
}
int setAttribute(Volume* volume, uint32_t fileID, const char* name, uint8_t* data, size_t size) {
HFSPlusAttrKey key;
HFSPlusAttrData* record;
int ret, exact;
if(!volume->attrTree)
return FALSE;
memset(&key, 0 , sizeof(HFSPlusAttrKey));
key.fileID = fileID;
key.startBlock = 0;
ASCIIToUnicode(name, &key.name);
key.keyLength = sizeof(HFSPlusAttrKey) - sizeof(HFSUniStr255) + sizeof(key.name.length) + (sizeof(uint16_t) * key.name.length);
record = (HFSPlusAttrData*) malloc(sizeof(HFSPlusAttrData) + size);
memset(record, 0, sizeof(HFSPlusAttrData));
record->recordType = kHFSPlusAttrInlineData;
record->size = size;
memcpy(record->data, data, size);
ret = updateAttributes(volume, &key, (HFSPlusAttrRecord*) record);
free(record);
return ret;
}
int unsetAttribute(Volume* volume, uint32_t fileID, const char* name) {
HFSPlusAttrKey key;
if(!volume->attrTree)
return FALSE;
memset(&key, 0 , sizeof(HFSPlusAttrKey));
key.fileID = fileID;
key.startBlock = 0;
ASCIIToUnicode(name, &key.name);
key.keyLength = sizeof(HFSPlusAttrKey) - sizeof(HFSUniStr255) + sizeof(key.name.length) + (sizeof(uint16_t) * key.name.length);
return removeFromBTree(volume->attrTree, (BTKey*)(&key));
}
XAttrList* getAllExtendedAttributes(HFSCatalogNodeID CNID, Volume* volume) {
BTree* tree;
HFSPlusAttrKey key;
HFSPlusAttrRecord* record;
uint32_t nodeNumber;
int recordNumber;
BTNodeDescriptor* descriptor;
HFSPlusAttrKey* currentKey;
off_t recordOffset;
XAttrList* list = NULL;
XAttrList* lastItem = NULL;
XAttrList* item = NULL;
if(!volume->attrTree)
return NULL;
memset(&key, 0 , sizeof(HFSPlusAttrKey));
key.fileID = CNID;
key.startBlock = 0;
key.name.length = 0;
key.keyLength = sizeof(HFSPlusAttrKey) - sizeof(HFSUniStr255) + sizeof(key.name.length) + (sizeof(uint16_t) * key.name.length);
tree = volume->attrTree;
record = (HFSPlusAttrRecord*) search(tree, (BTKey*)(&key), NULL, &nodeNumber, &recordNumber);
if(record == NULL)
return NULL;
free(record);
while(nodeNumber != 0) {
descriptor = readBTNodeDescriptor(nodeNumber, tree);
while(recordNumber < descriptor->numRecords) {
recordOffset = getRecordOffset(recordNumber, nodeNumber, tree);
currentKey = (HFSPlusAttrKey*) READ_KEY(tree, recordOffset, tree->io);
if(currentKey->fileID == CNID) {
item = (XAttrList*) malloc(sizeof(XAttrList));
item->name = (char*) malloc(currentKey->name.length + 1);
int i;
for(i = 0; i < currentKey->name.length; i++) {
item->name[i] = currentKey->name.unicode[i];
}
item->name[currentKey->name.length] = '\0';
item->next = NULL;
if(lastItem != NULL) {
lastItem->next = item;
} else {
list = item;
}
lastItem = item;
free(currentKey);
} else {
free(currentKey);
free(descriptor);
return list;
}
recordNumber++;
}
nodeNumber = descriptor->fLink;
recordNumber = 0;
free(descriptor);
}
return list;
}
BTree* openAttributesTree(io_func* file) {
return openBTree(file, &attrCompare, &attrKeyRead, &attrKeyWrite, &attrKeyPrint, &attrDataRead);
}

View File

@ -0,0 +1,75 @@
#ifndef ABSTRACTFILE_H
#define ABSTRACTFILE_H
#include "common.h"
#include <stdint.h>
typedef struct AbstractFile AbstractFile;
typedef struct AbstractFile2 AbstractFile2;
typedef size_t (*WriteFunc)(AbstractFile* file, const void* data, size_t len);
typedef size_t (*ReadFunc)(AbstractFile* file, void* data, size_t len);
typedef int (*SeekFunc)(AbstractFile* file, off_t offset);
typedef off_t (*TellFunc)(AbstractFile* file);
typedef void (*CloseFunc)(AbstractFile* file);
typedef off_t (*GetLengthFunc)(AbstractFile* file);
typedef void (*SetKeyFunc)(AbstractFile2* file, const unsigned int* key, const unsigned int* iv);
typedef enum AbstractFileType {
AbstractFileTypeFile,
AbstractFileType8900,
AbstractFileTypeImg2,
AbstractFileTypeImg3,
AbstractFileTypeLZSS,
AbstractFileTypeIBootIM,
AbstractFileTypeMem,
AbstractFileTypeMemFile,
AbstractFileTypeDummy
} AbstractFileType;
struct AbstractFile {
void* data;
WriteFunc write;
ReadFunc read;
SeekFunc seek;
TellFunc tell;
GetLengthFunc getLength;
CloseFunc close;
AbstractFileType type;
};
struct AbstractFile2 {
AbstractFile super;
SetKeyFunc setKey;
};
typedef struct {
size_t offset;
void** buffer;
size_t bufferSize;
} MemWrapperInfo;
typedef struct {
size_t offset;
void** buffer;
size_t* bufferSize;
size_t actualBufferSize;
} MemFileWrapperInfo;
#ifdef __cplusplus
extern "C" {
#endif
AbstractFile* createAbstractFileFromFile(FILE* file);
AbstractFile* createAbstractFileFromDummy();
AbstractFile* createAbstractFileFromMemory(void** buffer, size_t size);
AbstractFile* createAbstractFileFromMemoryFile(void** buffer, size_t* size);
AbstractFile* createAbstractFileFromMemoryFileBuffer(void** buffer, size_t* size, size_t actualBufferSize);
void abstractFilePrint(AbstractFile* file, const char* format, ...);
io_func* IOFuncFromAbstractFile(AbstractFile* file);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,108 @@
#ifndef COMMON_H
#define COMMON_H
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#ifdef WIN32
#define fseeko fseeko64
#define ftello ftello64
#define off_t off64_t
#define mkdir(x, y) mkdir(x)
#define PATH_SEPARATOR "\\"
#else
#define PATH_SEPARATOR "/"
#endif
#define TRUE 1
#define FALSE 0
#define FLIPENDIAN(x) flipEndian((unsigned char *)(&(x)), sizeof(x))
#define FLIPENDIANLE(x) flipEndianLE((unsigned char *)(&(x)), sizeof(x))
#define IS_BIG_ENDIAN 0
#define IS_LITTLE_ENDIAN 1
#define TIME_OFFSET_FROM_UNIX 2082844800L
#define APPLE_TO_UNIX_TIME(x) ((x) - TIME_OFFSET_FROM_UNIX)
#define UNIX_TO_APPLE_TIME(x) ((x) + TIME_OFFSET_FROM_UNIX)
#define ASSERT(x, m) if(!(x)) { fflush(stdout); fprintf(stderr, "error: %s\n", m); perror("error"); fflush(stderr); exit(1); }
extern char endianness;
static inline void flipEndian(unsigned char* x, int length) {
int i;
unsigned char tmp;
if(endianness == IS_BIG_ENDIAN) {
return;
} else {
for(i = 0; i < (length / 2); i++) {
tmp = x[i];
x[i] = x[length - i - 1];
x[length - i - 1] = tmp;
}
}
}
static inline void flipEndianLE(unsigned char* x, int length) {
int i;
unsigned char tmp;
if(endianness == IS_LITTLE_ENDIAN) {
return;
} else {
for(i = 0; i < (length / 2); i++) {
tmp = x[i];
x[i] = x[length - i - 1];
x[length - i - 1] = tmp;
}
}
}
static inline void hexToBytes(const char* hex, uint8_t** buffer, size_t* bytes) {
*bytes = strlen(hex) / 2;
*buffer = (uint8_t*) malloc(*bytes);
size_t i;
for(i = 0; i < *bytes; i++) {
uint32_t byte;
sscanf(hex, "%2x", &byte);
(*buffer)[i] = byte;
hex += 2;
}
}
static inline void hexToInts(const char* hex, unsigned int** buffer, size_t* bytes) {
*bytes = strlen(hex) / 2;
*buffer = (unsigned int*) malloc((*bytes) * sizeof(int));
size_t i;
for(i = 0; i < *bytes; i++) {
sscanf(hex, "%2x", &((*buffer)[i]));
hex += 2;
}
}
struct io_func_struct;
typedef int (*readFunc)(struct io_func_struct* io, off_t location, size_t size, void *buffer);
typedef int (*writeFunc)(struct io_func_struct* io, off_t location, size_t size, void *buffer);
typedef void (*closeFunc)(struct io_func_struct* io);
typedef struct io_func_struct {
void* data;
readFunc read;
writeFunc write;
closeFunc close;
} io_func;
struct AbstractFile;
unsigned char* decodeBase64(char* toDecode, size_t* dataLength);
void writeBase64(struct AbstractFile* file, unsigned char* data, size_t dataLength, int tabLength, int width);
char* convertBase64(unsigned char* data, size_t dataLength, int tabLength, int width);
#endif

View File

@ -0,0 +1,342 @@
#ifndef DMG_H
#define DMG_H
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <hfs/hfsplus.h>
#include "abstractfile.h"
#define CHECKSUM_CRC32 0x00000002
#define CHECKSUM_MKBLOCK 0x0002
#define CHECKSUM_NONE 0x0000
#define BLOCK_ZLIB 0x80000005
#define BLOCK_RAW 0x00000001
#define BLOCK_IGNORE 0x00000002
#define BLOCK_COMMENT 0x7FFFFFFE
#define BLOCK_TERMINATOR 0xFFFFFFFF
#define SECTOR_SIZE 512
#define DRIVER_DESCRIPTOR_SIGNATURE 0x4552
#define APPLE_PARTITION_MAP_SIGNATURE 0x504D
#define UDIF_BLOCK_SIGNATURE 0x6D697368
#define KOLY_SIGNATURE 0x6B6F6C79
#define HFSX_SIGNATURE 0x4858
#define ATTRIBUTE_HDIUTIL 0x0050
#define HFSX_VOLUME_TYPE "Apple_HFSX"
#define DDM_SIZE 0x1
#define PARTITION_SIZE 0x3f
#define ATAPI_SIZE 0x8
#define FREE_SIZE 0xa
#define EXTRA_SIZE (ATAPI_OFFSET + ATAPI_SIZE + FREE_SIZE)
#define DDM_OFFSET 0x0
#define PARTITION_OFFSET (DDM_SIZE)
#define ATAPI_OFFSET 64
#define USER_OFFSET (ATAPI_OFFSET + ATAPI_SIZE)
#define BOOTCODE_DMMY 0x444D4D59
#define BOOTCODE_GOON 0x676F6F6E
enum {
kUDIFFlagsFlattened = 1
};
enum {
kUDIFDeviceImageType = 1,
kUDIFPartitionImageType = 2
};
typedef struct {
uint32_t type;
uint32_t size;
uint32_t data[0x20];
} __attribute__((__packed__)) UDIFChecksum;
typedef struct {
uint32_t data1; /* smallest */
uint32_t data2;
uint32_t data3;
uint32_t data4; /* largest */
} __attribute__((__packed__)) UDIFID;
typedef struct {
uint32_t fUDIFSignature;
uint32_t fUDIFVersion;
uint32_t fUDIFHeaderSize;
uint32_t fUDIFFlags;
uint64_t fUDIFRunningDataForkOffset;
uint64_t fUDIFDataForkOffset;
uint64_t fUDIFDataForkLength;
uint64_t fUDIFRsrcForkOffset;
uint64_t fUDIFRsrcForkLength;
uint32_t fUDIFSegmentNumber;
uint32_t fUDIFSegmentCount;
UDIFID fUDIFSegmentID; /* a 128-bit number like a GUID, but does not seem to be a OSF GUID, since it doesn't have the proper versioning byte */
UDIFChecksum fUDIFDataForkChecksum;
uint64_t fUDIFXMLOffset;
uint64_t fUDIFXMLLength;
uint8_t reserved1[0x78]; /* this is actually the perfect amount of space to store every thing in this struct until the checksum */
UDIFChecksum fUDIFMasterChecksum;
uint32_t fUDIFImageVariant;
uint64_t fUDIFSectorCount;
uint32_t reserved2;
uint32_t reserved3;
uint32_t reserved4;
} __attribute__((__packed__)) UDIFResourceFile;
typedef struct {
uint32_t type;
uint32_t reserved;
uint64_t sectorStart;
uint64_t sectorCount;
uint64_t compOffset;
uint64_t compLength;
} __attribute__((__packed__)) BLKXRun;
typedef struct {
uint16_t version; /* set to 5 */
uint32_t isHFS; /* first dword of v53(ImageInfoRec): Set to 1 if it's a HFS or HFS+ partition -- duh. */
uint32_t unknown1; /* second dword of v53: seems to be garbage if it's HFS+, stuff related to HFS embedded if it's that*/
uint8_t dataLen; /* length of data that proceeds, comes right before the data in ImageInfoRec. Always set to 0 for HFS, HFS+ */
uint8_t data[255]; /* other data from v53, dataLen + 1 bytes, the rest NULL filled... a string? Not set for HFS, HFS+ */
uint32_t unknown2; /* 8 bytes before volumeModified in v53, seems to be always set to 0 for HFS, HFS+ */
uint32_t unknown3; /* 4 bytes before volumeModified in v53, seems to be always set to 0 for HFS, HFS+ */
uint32_t volumeModified; /* offset 272 in v53 */
uint32_t unknown4; /* always seems to be 0 for UDIF */
uint16_t volumeSignature; /* HX in our case */
uint16_t sizePresent; /* always set to 1 */
} __attribute__((__packed__)) SizeResource;
typedef struct {
uint16_t version; /* set to 1 */
uint32_t type; /* set to 0x2 for MKBlockChecksum */
uint32_t checksum;
} __attribute__((__packed__)) CSumResource;
typedef struct NSizResource {
char isVolume;
unsigned char* sha1Digest;
uint32_t blockChecksum2;
uint32_t bytes;
uint32_t modifyDate;
uint32_t partitionNumber;
uint32_t version;
uint32_t volumeSignature;
struct NSizResource* next;
} NSizResource;
#define DDM_DESCRIPTOR 0xFFFFFFFF
#define ENTIRE_DEVICE_DESCRIPTOR 0xFFFFFFFE
typedef struct {
uint32_t fUDIFBlocksSignature;
uint32_t infoVersion;
uint64_t firstSectorNumber;
uint64_t sectorCount;
uint64_t dataStart;
uint32_t decompressBufferRequested;
uint32_t blocksDescriptor;
uint32_t reserved1;
uint32_t reserved2;
uint32_t reserved3;
uint32_t reserved4;
uint32_t reserved5;
uint32_t reserved6;
UDIFChecksum checksum;
uint32_t blocksRunCount;
BLKXRun runs[0];
} __attribute__((__packed__)) BLKXTable;
typedef struct {
uint32_t ddBlock;
uint16_t ddSize;
uint16_t ddType;
} __attribute__((__packed__)) DriverDescriptor;
typedef struct {
uint16_t pmSig;
uint16_t pmSigPad;
uint32_t pmMapBlkCnt;
uint32_t pmPyPartStart;
uint32_t pmPartBlkCnt;
unsigned char pmPartName[32];
unsigned char pmParType[32];
uint32_t pmLgDataStart;
uint32_t pmDataCnt;
uint32_t pmPartStatus;
uint32_t pmLgBootStart;
uint32_t pmBootSize;
uint32_t pmBootAddr;
uint32_t pmBootAddr2;
uint32_t pmBootEntry;
uint32_t pmBootEntry2;
uint32_t pmBootCksum;
unsigned char pmProcessor[16];
uint32_t bootCode;
uint16_t pmPad[186];
} __attribute__((__packed__)) Partition;
typedef struct {
uint16_t sbSig;
uint16_t sbBlkSize;
uint32_t sbBlkCount;
uint16_t sbDevType;
uint16_t sbDevId;
uint32_t sbData;
uint16_t sbDrvrCount;
uint32_t ddBlock;
uint16_t ddSize;
uint16_t ddType;
DriverDescriptor ddPad[0];
} __attribute__((__packed__)) DriverDescriptorRecord;
typedef struct ResourceData {
uint32_t attributes;
unsigned char* data;
size_t dataLength;
int id;
char* name;
struct ResourceData* next;
} ResourceData;
typedef void (*FlipDataFunc)(unsigned char* data, char out);
typedef void (*ChecksumFunc)(void* ckSum, const unsigned char* data, size_t len);
typedef struct ResourceKey {
unsigned char* key;
ResourceData* data;
struct ResourceKey* next;
FlipDataFunc flipData;
} ResourceKey;
#define SHA1_DIGEST_SIZE 20
typedef struct {
uint32_t state[5];
uint32_t count[2];
uint8_t buffer[64];
} SHA1_CTX;
typedef struct {
uint32_t block;
uint32_t crc;
SHA1_CTX sha1;
} ChecksumToken;
static inline uint32_t readUInt32(AbstractFile* file) {
uint32_t data;
ASSERT(file->read(file, &data, sizeof(data)) == sizeof(data), "fread");
FLIPENDIAN(data);
return data;
}
static inline void writeUInt32(AbstractFile* file, uint32_t data) {
FLIPENDIAN(data);
ASSERT(file->write(file, &data, sizeof(data)) == sizeof(data), "fwrite");
}
static inline uint32_t readUInt64(AbstractFile* file) {
uint64_t data;
ASSERT(file->read(file, &data, sizeof(data)) == sizeof(data), "fread");
FLIPENDIAN(data);
return data;
}
static inline void writeUInt64(AbstractFile* file, uint64_t data) {
FLIPENDIAN(data);
ASSERT(file->write(file, &data, sizeof(data)) == sizeof(data), "fwrite");
}
#ifdef __cplusplus
extern "C" {
#endif
void outResources(AbstractFile* file, AbstractFile* out);
uint32_t CRC32Checksum(uint32_t* crc, const unsigned char *buf, size_t len);
uint32_t MKBlockChecksum(uint32_t* ckSum, const unsigned char* data, size_t len);
void BlockSHA1CRC(void* token, const unsigned char* data, size_t len);
void BlockCRC(void* token, const unsigned char* data, size_t len);
void CRCProxy(void* token, const unsigned char* data, size_t len);
void SHA1Init(SHA1_CTX* context);
void SHA1Update(SHA1_CTX* context, const uint8_t* data, const size_t len);
void SHA1Final(uint8_t digest[SHA1_DIGEST_SIZE], SHA1_CTX* context);
void flipUDIFChecksum(UDIFChecksum* o, char out);
void readUDIFChecksum(AbstractFile* file, UDIFChecksum* o);
void writeUDIFChecksum(AbstractFile* file, UDIFChecksum* o);
void readUDIFID(AbstractFile* file, UDIFID* o);
void writeUDIFID(AbstractFile* file, UDIFID* o);
void readUDIFResourceFile(AbstractFile* file, UDIFResourceFile* o);
void writeUDIFResourceFile(AbstractFile* file, UDIFResourceFile* o);
ResourceKey* readResources(AbstractFile* file, UDIFResourceFile* resourceFile);
void writeResources(AbstractFile* file, ResourceKey* resources);
void releaseResources(ResourceKey* resources);
NSizResource* readNSiz(ResourceKey* resources);
ResourceKey* writeNSiz(NSizResource* nSiz);
void releaseNSiz(NSizResource* nSiz);
extern const char* plistHeader;
extern const char* plistFooter;
ResourceKey* getResourceByKey(ResourceKey* resources, const char* key);
ResourceData* getDataByID(ResourceKey* resource, int id);
ResourceKey* insertData(ResourceKey* resources, const char* key, int id, const char* name, const char* data, size_t dataLength, uint32_t attributes);
ResourceKey* makePlst();
ResourceKey* makeSize(HFSPlusVolumeHeader* volumeHeader);
void flipDriverDescriptorRecord(DriverDescriptorRecord* record, char out);
void flipPartition(Partition* partition, char out, unsigned int BlockSize);
void flipPartitionMultiple(Partition* partition, char multiple, char out, unsigned int BlockSize);
void readDriverDescriptorMap(AbstractFile* file, ResourceKey* resources);
DriverDescriptorRecord* createDriverDescriptorMap(uint32_t numSectors, unsigned int BlockSize);
int writeDriverDescriptorMap(int pNum, AbstractFile* file, DriverDescriptorRecord* DDM, unsigned int BlockSize, ChecksumFunc dataForkChecksum, void* dataForkToken, ResourceKey **resources);
void readApplePartitionMap(AbstractFile* file, ResourceKey* resources, unsigned int BlockSize);
Partition* createApplePartitionMap(uint32_t numSectors, const char* volumeType, unsigned int BlockSize);
int writeApplePartitionMap(int pNum, AbstractFile* file, Partition* partitions, unsigned int BlockSize, ChecksumFunc dataForkChecksum, void* dataForkToken, ResourceKey **resources, NSizResource** nsizIn);
int writeATAPI(int pNum, AbstractFile* file, unsigned int BlockSize, ChecksumFunc dataForkChecksum, void* dataForkToken, ResourceKey **resources, NSizResource** nsizIn);
int writeFreePartition(int pNum, AbstractFile* outFile, uint32_t offset, uint32_t numSectors, ResourceKey** resources);
void extractBLKX(AbstractFile* in, AbstractFile* out, BLKXTable* blkx);
BLKXTable* insertBLKX(AbstractFile* out, AbstractFile* in, uint32_t firstSectorNumber, uint32_t numSectors, uint32_t blocksDescriptor,
uint32_t checksumType, ChecksumFunc uncompressedChk, void* uncompressedChkToken, ChecksumFunc compressedChk,
void* compressedChkToken, Volume* volume, int addComment);
int extractDmg(AbstractFile* abstractIn, AbstractFile* abstractOut, int partNum);
int buildDmg(AbstractFile* abstractIn, AbstractFile* abstractOut, unsigned int BlockSize);
int convertToISO(AbstractFile* abstractIn, AbstractFile* abstractOut);
int convertToDMG(AbstractFile* abstractIn, AbstractFile* abstractOut);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,21 @@
/*
* dmgfile.h
* libdmg-hfsplus
*
*/
#include <dmg/dmg.h>
io_func* openDmgFile(AbstractFile* dmg);
io_func* openDmgFilePartition(AbstractFile* dmg, int partition);
typedef struct DMG {
AbstractFile* dmg;
ResourceKey* resources;
uint32_t numBLKX;
BLKXTable** blkx;
void* runData;
uint64_t runStart;
uint64_t runEnd;
uint64_t offset;
} DMG;

View File

@ -0,0 +1,19 @@
#ifndef DMGLIB_H
#define DMGLIB_H
#include <dmg/dmg.h>
#include "abstractfile.h"
#ifdef __cplusplus
extern "C" {
#endif
int extractDmg(AbstractFile* abstractIn, AbstractFile* abstractOut, int partNum);
int buildDmg(AbstractFile* abstractIn, AbstractFile* abstractOut, unsigned int BlockSize);
int convertToDMG(AbstractFile* abstractIn, AbstractFile* abstractOut);
int convertToISO(AbstractFile* abstractIn, AbstractFile* abstractOut);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,98 @@
#ifndef FILEVAULT_H
#define FILEVAULT_H
#include <stdint.h>
#include "dmg.h"
#ifdef HAVE_CRYPT
#include <openssl/hmac.h>
#include <openssl/aes.h>
#define FILEVAULT_CIPHER_KEY_LENGTH 16
#define FILEVAULT_CIPHER_BLOCKSIZE 16
#define FILEVAULT_CHUNK_SIZE 4096
#define FILEVAULT_PBKDF2_ITER_COUNT 1000
#define FILEVAULT_MSGDGST_LENGTH 20
/*
* Information about the FileVault format was yoinked from vfdecrypt, which was written by Ralf-Philipp Weinmann <ralf@coderpunks.org>,
* Jacob Appelbaum <jacob@appelbaum.net>, and Christian Fromme <kaner@strace.org>
*/
#define FILEVAULT_V2_SIGNATURE 0x656e637263647361ULL
typedef struct FileVaultV1Header {
uint8_t padding1[48];
uint32_t kdfIterationCount;
uint32_t kdfSaltLen;
uint8_t kdfSalt[48];
uint8_t unwrapIV[0x20];
uint32_t wrappedAESKeyLen;
uint8_t wrappedAESKey[296];
uint32_t wrappedHMACSHA1KeyLen;
uint8_t wrappedHMACSHA1Key[300];
uint32_t integrityKeyLen;
uint8_t integrityKey[48];
uint8_t padding2[484];
} __attribute__((__packed__)) FileVaultV1Header;
typedef struct FileVaultV2Header {
uint64_t signature;
uint32_t version;
uint32_t encIVSize;
uint32_t unk1;
uint32_t unk2;
uint32_t unk3;
uint32_t unk4;
uint32_t unk5;
UDIFID uuid;
uint32_t blockSize;
uint64_t dataSize;
uint64_t dataOffset;
uint8_t padding[0x260];
uint32_t kdfAlgorithm;
uint32_t kdfPRNGAlgorithm;
uint32_t kdfIterationCount;
uint32_t kdfSaltLen;
uint8_t kdfSalt[0x20];
uint32_t blobEncIVSize;
uint8_t blobEncIV[0x20];
uint32_t blobEncKeyBits;
uint32_t blobEncAlgorithm;
uint32_t blobEncPadding;
uint32_t blobEncMode;
uint32_t encryptedKeyblobSize;
uint8_t encryptedKeyblob[0x30];
} __attribute__((__packed__)) FileVaultV2Header;
typedef struct FileVaultInfo {
union {
FileVaultV1Header v1;
FileVaultV2Header v2;
} header;
uint8_t version;
uint64_t dataOffset;
uint64_t dataSize;
uint32_t blockSize;
AbstractFile* file;
HMAC_CTX hmacCTX;
AES_KEY aesKey;
AES_KEY aesEncKey;
off_t offset;
uint32_t curChunk;
unsigned char chunk[FILEVAULT_CHUNK_SIZE];
char dirty;
char headerDirty;
} FileVaultInfo;
#endif
AbstractFile* createAbstractFileFromFileVault(AbstractFile* file, const char* key);
#endif

View File

@ -0,0 +1,71 @@
#ifndef HFSCOMPRESS_H
#define HFSCOMPRESS_H
#include <stdint.h>
#include "common.h"
#define CMPFS_MAGIC 0x636D7066
typedef struct HFSPlusDecmpfs {
uint32_t magic;
uint32_t flags;
uint64_t size;
uint8_t data[0];
} __attribute__ ((packed)) HFSPlusDecmpfs;
typedef struct HFSPlusCmpfRsrcHead {
uint32_t headerSize;
uint32_t totalSize;
uint32_t dataSize;
uint32_t flags;
} __attribute__ ((packed)) HFSPlusCmpfRsrcHead;
typedef struct HFSPlusCmpfRsrcBlock {
uint32_t offset;
uint32_t size;
} __attribute__ ((packed)) HFSPlusCmpfRsrcBlock;
typedef struct HFSPlusCmpfRsrcBlockHead {
uint32_t dataSize;
uint32_t numBlocks;
HFSPlusCmpfRsrcBlock blocks[0];
} __attribute__ ((packed)) HFSPlusCmpfRsrcBlockHead;
typedef struct HFSPlusCmpfEnd {
uint32_t pad[6];
uint16_t unk1;
uint16_t unk2;
uint16_t unk3;
uint32_t magic;
uint32_t flags;
uint64_t size;
uint32_t unk4;
} __attribute__ ((packed)) HFSPlusCmpfEnd;
typedef struct HFSPlusCompressed {
Volume* volume;
HFSPlusCatalogFile* file;
io_func* io;
size_t decmpfsSize;
HFSPlusDecmpfs* decmpfs;
HFSPlusCmpfRsrcHead rsrcHead;
HFSPlusCmpfRsrcBlockHead* blocks;
int dirty;
uint8_t* cached;
uint32_t cachedStart;
uint32_t cachedEnd;
} HFSPlusCompressed;
#ifdef __cplusplus
extern "C" {
#endif
void flipHFSPlusDecmpfs(HFSPlusDecmpfs* compressData);
io_func* openHFSPlusCompressed(Volume* volume, HFSPlusCatalogFile* file);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,25 @@
#include "common.h"
#include "hfsplus.h"
#include "abstractfile.h"
#ifdef __cplusplus
extern "C" {
#endif
void writeToFile(HFSPlusCatalogFile* file, AbstractFile* output, Volume* volume);
void writeToHFSFile(HFSPlusCatalogFile* file, AbstractFile* input, Volume* volume);
void get_hfs(Volume* volume, const char* inFileName, AbstractFile* output);
int add_hfs(Volume* volume, AbstractFile* inFile, const char* outFileName);
void grow_hfs(Volume* volume, uint64_t newSize);
void removeAllInFolder(HFSCatalogNodeID folderID, Volume* volume, const char* parentName);
void addAllInFolder(HFSCatalogNodeID folderID, Volume* volume, const char* parentName);
void addall_hfs(Volume* volume, const char* dirToMerge, const char* dest);
void extractAllInFolder(HFSCatalogNodeID folderID, Volume* volume);
int copyAcrossVolumes(Volume* volume1, Volume* volume2, char* path1, char* path2);
void hfs_untar(Volume* volume, AbstractFile* tarFile);
void hfs_ls(Volume* volume, const char* path);
void hfs_setsilence(int s);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,586 @@
#ifndef HFSPLUS_H
#define HFSPLUS_H
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include "common.h"
#define READ(a, b, c, d) ((*((a)->read))(a, b, c, d))
#define WRITE(a, b, c, d) ((*((a)->write))(a, b, c, d))
#define CLOSE(a) ((*((a)->close))(a))
#define COMPARE(a, b, c) ((*((a)->compare))(b, c))
#define READ_KEY(a, b, c) ((*((a)->keyRead))(b, c))
#define WRITE_KEY(a, b, c, d) ((*((a)->keyWrite))(b, c, d))
#define READ_DATA(a, b, c) ((*((a)->dataRead))(b, c))
struct BTKey {
uint16_t keyLength;
unsigned char data[0];
} __attribute__((__packed__));
typedef struct BTKey BTKey;
typedef BTKey* (*dataReadFunc)(off_t offset, struct io_func_struct* io);
typedef void (*keyPrintFunc)(BTKey* toPrint);
typedef int (*keyWriteFunc)(off_t offset, BTKey* toWrite, struct io_func_struct* io);
typedef int (*compareFunc)(BTKey* left, BTKey* right);
#define STR_SIZE(str) (sizeof(uint16_t) + (sizeof(uint16_t) * (str).length))
#ifndef __HFS_FORMAT__
typedef uint32_t HFSCatalogNodeID;
enum {
kHFSRootParentID = 1,
kHFSRootFolderID = 2,
kHFSExtentsFileID = 3,
kHFSCatalogFileID = 4,
kHFSBadBlockFileID = 5,
kHFSAllocationFileID = 6,
kHFSStartupFileID = 7,
kHFSAttributesFileID = 8,
kHFSRepairCatalogFileID = 14,
kHFSBogusExtentFileID = 15,
kHFSFirstUserCatalogNodeID = 16
};
struct HFSUniStr255 {
uint16_t length;
uint16_t unicode[255];
} __attribute__((__packed__));
typedef struct HFSUniStr255 HFSUniStr255;
typedef const HFSUniStr255 *ConstHFSUniStr255Param;
struct HFSPlusExtentDescriptor {
uint32_t startBlock;
uint32_t blockCount;
} __attribute__((__packed__));
typedef struct HFSPlusExtentDescriptor HFSPlusExtentDescriptor;
typedef HFSPlusExtentDescriptor HFSPlusExtentRecord[8];
struct HFSPlusForkData {
uint64_t logicalSize;
uint32_t clumpSize;
uint32_t totalBlocks;
HFSPlusExtentRecord extents;
} __attribute__((__packed__));
typedef struct HFSPlusForkData HFSPlusForkData;
struct HFSPlusVolumeHeader {
uint16_t signature;
uint16_t version;
uint32_t attributes;
uint32_t lastMountedVersion;
uint32_t journalInfoBlock;
uint32_t createDate;
uint32_t modifyDate;
uint32_t backupDate;
uint32_t checkedDate;
uint32_t fileCount;
uint32_t folderCount;
uint32_t blockSize;
uint32_t totalBlocks;
uint32_t freeBlocks;
uint32_t nextAllocation;
uint32_t rsrcClumpSize;
uint32_t dataClumpSize;
HFSCatalogNodeID nextCatalogID;
uint32_t writeCount;
uint64_t encodingsBitmap;
uint32_t finderInfo[8];
HFSPlusForkData allocationFile;
HFSPlusForkData extentsFile;
HFSPlusForkData catalogFile;
HFSPlusForkData attributesFile;
HFSPlusForkData startupFile;
} __attribute__((__packed__));
typedef struct HFSPlusVolumeHeader HFSPlusVolumeHeader;
enum {
kBTLeafNode = -1,
kBTIndexNode = 0,
kBTHeaderNode = 1,
kBTMapNode = 2
};
struct BTNodeDescriptor {
uint32_t fLink;
uint32_t bLink;
int8_t kind;
uint8_t height;
uint16_t numRecords;
uint16_t reserved;
} __attribute__((__packed__));
typedef struct BTNodeDescriptor BTNodeDescriptor;
#define kHFSCaseFolding 0xCF
#define kHFSBinaryCompare 0xBC
struct BTHeaderRec {
uint16_t treeDepth;
uint32_t rootNode;
uint32_t leafRecords;
uint32_t firstLeafNode;
uint32_t lastLeafNode;
uint16_t nodeSize;
uint16_t maxKeyLength;
uint32_t totalNodes;
uint32_t freeNodes;
uint16_t reserved1;
uint32_t clumpSize; // misaligned
uint8_t btreeType;
uint8_t keyCompareType;
uint32_t attributes; // long aligned again
uint32_t reserved3[16];
} __attribute__((__packed__));
typedef struct BTHeaderRec BTHeaderRec;
struct HFSPlusExtentKey {
uint16_t keyLength;
uint8_t forkType;
uint8_t pad;
HFSCatalogNodeID fileID;
uint32_t startBlock;
} __attribute__((__packed__));
typedef struct HFSPlusExtentKey HFSPlusExtentKey;
struct HFSPlusCatalogKey {
uint16_t keyLength;
HFSCatalogNodeID parentID;
HFSUniStr255 nodeName;
} __attribute__((__packed__));
typedef struct HFSPlusCatalogKey HFSPlusCatalogKey;
#ifndef __MACTYPES__
struct Point {
int16_t v;
int16_t h;
} __attribute__((__packed__));
typedef struct Point Point;
struct Rect {
int16_t top;
int16_t left;
int16_t bottom;
int16_t right;
} __attribute__((__packed__));
typedef struct Rect Rect;
/* OSType is a 32-bit value made by packing four 1-byte characters
together. */
typedef uint32_t FourCharCode;
typedef FourCharCode OSType;
#endif
/* Finder flags (finderFlags, fdFlags and frFlags) */
enum {
kIsOnDesk = 0x0001, /* Files and folders (System 6) */
kColor = 0x000E, /* Files and folders */
kIsShared = 0x0040, /* Files only (Applications only) If */
/* clear, the application needs */
/* to write to its resource fork, */
/* and therefore cannot be shared */
/* on a server */
kHasNoINITs = 0x0080, /* Files only (Extensions/Control */
/* Panels only) */
/* This file contains no INIT resource */
kHasBeenInited = 0x0100, /* Files only. Clear if the file */
/* contains desktop database resources */
/* ('BNDL', 'FREF', 'open', 'kind'...) */
/* that have not been added yet. Set */
/* only by the Finder. */
/* Reserved for folders */
kHasCustomIcon = 0x0400, /* Files and folders */
kIsStationery = 0x0800, /* Files only */
kNameLocked = 0x1000, /* Files and folders */
kHasBundle = 0x2000, /* Files only */
kIsInvisible = 0x4000, /* Files and folders */
kIsAlias = 0x8000 /* Files only */
};
/* Extended flags (extendedFinderFlags, fdXFlags and frXFlags) */
enum {
kExtendedFlagsAreInvalid = 0x8000, /* The other extended flags */
/* should be ignored */
kExtendedFlagHasCustomBadge = 0x0100, /* The file or folder has a */
/* badge resource */
kExtendedFlagHasRoutingInfo = 0x0004 /* The file contains routing */
/* info resource */
};
enum {
kSymLinkFileType = 0x736C6E6B, /* 'slnk' */
kSymLinkCreator = 0x72686170 /* 'rhap' */
};
struct FileInfo {
OSType fileType; /* The type of the file */
OSType fileCreator; /* The file's creator */
uint16_t finderFlags;
Point location; /* File's location in the folder. */
uint16_t reservedField;
} __attribute__((__packed__));
typedef struct FileInfo FileInfo;
struct ExtendedFileInfo {
int16_t reserved1[4];
uint16_t extendedFinderFlags;
int16_t reserved2;
int32_t putAwayFolderID;
} __attribute__((__packed__));
typedef struct ExtendedFileInfo ExtendedFileInfo;
struct FolderInfo {
Rect windowBounds; /* The position and dimension of the */
/* folder's window */
uint16_t finderFlags;
Point location; /* Folder's location in the parent */
/* folder. If set to {0, 0}, the Finder */
/* will place the item automatically */
uint16_t reservedField;
} __attribute__((__packed__));
typedef struct FolderInfo FolderInfo;
struct ExtendedFolderInfo {
Point scrollPosition; /* Scroll position (for icon views) */
int32_t reserved1;
uint16_t extendedFinderFlags;
int16_t reserved2;
int32_t putAwayFolderID;
} __attribute__((__packed__));
typedef struct ExtendedFolderInfo ExtendedFolderInfo;
#ifndef _STAT_H_
#ifndef _SYS_STAT_H
#define S_ISUID 0004000 /* set user id on execution */
#define S_ISGID 0002000 /* set group id on execution */
#define S_ISTXT 0001000 /* sticky bit */
#define S_IRWXU 0000700 /* RWX mask for owner */
#define S_IRUSR 0000400 /* R for owner */
#define S_IWUSR 0000200 /* W for owner */
#define S_IXUSR 0000100 /* X for owner */
#define S_IRWXG 0000070 /* RWX mask for group */
#define S_IRGRP 0000040 /* R for group */
#define S_IWGRP 0000020 /* W for group */
#define S_IXGRP 0000010 /* X for group */
#define S_IRWXO 0000007 /* RWX mask for other */
#define S_IROTH 0000004 /* R for other */
#define S_IWOTH 0000002 /* W for other */
#define S_IXOTH 0000001 /* X for other */
#define S_IFMT 0170000 /* type of file mask */
#define S_IFIFO 0010000 /* named pipe (fifo) */
#define S_IFCHR 0020000 /* character special */
#define S_IFDIR 0040000 /* directory */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */
#define S_IFLNK 0120000 /* symbolic link */
#define S_IFSOCK 0140000 /* socket */
#define S_IFWHT 0160000 /* whiteout */
#endif
#endif
#define UF_COMPRESSED 040
struct HFSPlusBSDInfo {
uint32_t ownerID;
uint32_t groupID;
uint8_t adminFlags;
uint8_t ownerFlags;
uint16_t fileMode;
union {
uint32_t iNodeNum;
uint32_t linkCount;
uint32_t rawDevice;
} special;
} __attribute__((__packed__));
typedef struct HFSPlusBSDInfo HFSPlusBSDInfo;
enum {
kHFSPlusFolderRecord = 0x0001,
kHFSPlusFileRecord = 0x0002,
kHFSPlusFolderThreadRecord = 0x0003,
kHFSPlusFileThreadRecord = 0x0004
};
enum {
kHFSFileLockedBit = 0x0000, /* file is locked and cannot be written to */
kHFSFileLockedMask = 0x0001,
kHFSThreadExistsBit = 0x0001, /* a file thread record exists for this file */
kHFSThreadExistsMask = 0x0002,
kHFSHasAttributesBit = 0x0002, /* object has extended attributes */
kHFSHasAttributesMask = 0x0004,
kHFSHasSecurityBit = 0x0003, /* object has security data (ACLs) */
kHFSHasSecurityMask = 0x0008,
kHFSHasFolderCountBit = 0x0004, /* only for HFSX, folder maintains a separate sub-folder count */
kHFSHasFolderCountMask = 0x0010, /* (sum of folder records and directory hard links) */
kHFSHasLinkChainBit = 0x0005, /* has hardlink chain (inode or link) */
kHFSHasLinkChainMask = 0x0020,
kHFSHasChildLinkBit = 0x0006, /* folder has a child that's a dir link */
kHFSHasChildLinkMask = 0x0040
};
struct HFSPlusCatalogFolder {
int16_t recordType;
uint16_t flags;
uint32_t valence;
HFSCatalogNodeID folderID;
uint32_t createDate;
uint32_t contentModDate;
uint32_t attributeModDate;
uint32_t accessDate;
uint32_t backupDate;
HFSPlusBSDInfo permissions;
FolderInfo userInfo;
ExtendedFolderInfo finderInfo;
uint32_t textEncoding;
uint32_t folderCount;
} __attribute__((__packed__));
typedef struct HFSPlusCatalogFolder HFSPlusCatalogFolder;
struct HFSPlusCatalogFile {
int16_t recordType;
uint16_t flags;
uint32_t reserved1;
HFSCatalogNodeID fileID;
uint32_t createDate;
uint32_t contentModDate;
uint32_t attributeModDate;
uint32_t accessDate;
uint32_t backupDate;
HFSPlusBSDInfo permissions;
FileInfo userInfo;
ExtendedFileInfo finderInfo;
uint32_t textEncoding;
uint32_t reserved2;
HFSPlusForkData dataFork;
HFSPlusForkData resourceFork;
} __attribute__((__packed__));
typedef struct HFSPlusCatalogFile HFSPlusCatalogFile;
struct HFSPlusCatalogThread {
int16_t recordType;
int16_t reserved;
HFSCatalogNodeID parentID;
HFSUniStr255 nodeName;
} __attribute__((__packed__));
typedef struct HFSPlusCatalogThread HFSPlusCatalogThread;
enum {
kHFSPlusAttrInlineData = 0x10,
kHFSPlusAttrForkData = 0x20,
kHFSPlusAttrExtents = 0x30
};
struct HFSPlusAttrForkData {
uint32_t recordType;
uint32_t reserved;
HFSPlusForkData theFork;
} __attribute__((__packed__));
typedef struct HFSPlusAttrForkData HFSPlusAttrForkData;
struct HFSPlusAttrExtents {
uint32_t recordType;
uint32_t reserved;
HFSPlusExtentRecord extents;
};
typedef struct HFSPlusAttrExtents HFSPlusAttrExtents;
struct HFSPlusAttrData {
uint32_t recordType;
uint32_t reserved[2];
uint32_t size;
uint8_t data[0];
} __attribute__((__packed__));
typedef struct HFSPlusAttrData HFSPlusAttrData;
union HFSPlusAttrRecord {
uint32_t recordType;
HFSPlusAttrData attrData;
HFSPlusAttrForkData forkData;
HFSPlusAttrExtents overflowExtents;
};
typedef union HFSPlusAttrRecord HFSPlusAttrRecord;
struct HFSPlusAttrKey {
uint16_t keyLength;
uint16_t pad;
uint32_t fileID;
uint32_t startBlock;
HFSUniStr255 name;
} __attribute__((__packed__));
typedef struct HFSPlusAttrKey HFSPlusAttrKey;
enum {
kHardLinkFileType = 0x686C6E6B, /* 'hlnk' */
kHFSPlusCreator = 0x6866732B /* 'hfs+' */
};
#endif
struct HFSPlusCatalogRecord {
int16_t recordType;
unsigned char data[0];
} __attribute__((__packed__));
typedef struct HFSPlusCatalogRecord HFSPlusCatalogRecord;
struct CatalogRecordList {
HFSUniStr255 name;
HFSPlusCatalogRecord* record;
struct CatalogRecordList* next;
};
typedef struct CatalogRecordList CatalogRecordList;
struct XAttrList {
char* name;
struct XAttrList* next;
};
typedef struct XAttrList XAttrList;
struct Extent {
uint32_t startBlock;
uint32_t blockCount;
struct Extent* next;
};
typedef struct Extent Extent;
typedef struct {
io_func* io;
BTHeaderRec *headerRec;
compareFunc compare;
dataReadFunc keyRead;
keyWriteFunc keyWrite;
keyPrintFunc keyPrint;
dataReadFunc dataRead;
} BTree;
typedef struct {
io_func* image;
HFSPlusVolumeHeader* volumeHeader;
BTree* extentsTree;
BTree* catalogTree;
BTree* attrTree;
io_func* allocationFile;
HFSCatalogNodeID metadataDir;
} Volume;
typedef struct {
HFSCatalogNodeID id;
HFSPlusCatalogRecord* catalogRecord;
Volume* volume;
HFSPlusForkData* forkData;
Extent* extents;
} RawFile;
#ifdef __cplusplus
extern "C" {
#endif
void hfs_panic(const char* panicString);
void printUnicode(HFSUniStr255* str);
char* unicodeToAscii(HFSUniStr255* str);
BTNodeDescriptor* readBTNodeDescriptor(uint32_t num, BTree* tree);
BTHeaderRec* readBTHeaderRec(io_func* io);
BTree* openBTree(io_func* io, compareFunc compare, dataReadFunc keyRead, keyWriteFunc keyWrite, keyPrintFunc keyPrint, dataReadFunc dataRead);
void closeBTree(BTree* tree);
off_t getRecordOffset(int num, uint32_t nodeNum, BTree* tree);
off_t getNodeNumberFromPointerRecord(off_t offset, io_func* io);
void* search(BTree* tree, BTKey* searchKey, int *exact, uint32_t *nodeNumber, int *recordNumber);
io_func* openFlatFile(const char* fileName);
io_func* openFlatFileRO(const char* fileName);
io_func* openRawFile(HFSCatalogNodeID id, HFSPlusForkData* forkData, HFSPlusCatalogRecord* catalogRecord, Volume* volume);
BTree* openAttributesTree(io_func* file);
size_t getAttribute(Volume* volume, uint32_t fileID, const char* name, uint8_t** data);
int setAttribute(Volume* volume, uint32_t fileID, const char* name, uint8_t* data, size_t size);
int unsetAttribute(Volume* volume, uint32_t fileID, const char* name);
XAttrList* getAllExtendedAttributes(HFSCatalogNodeID CNID, Volume* volume);
void flipExtentRecord(HFSPlusExtentRecord* extentRecord);
BTree* openExtentsTree(io_func* file);
void ASCIIToUnicode(const char* ascii, HFSUniStr255* unistr);
void flipCatalogFolder(HFSPlusCatalogFolder* record);
void flipCatalogFile(HFSPlusCatalogFile* record);
void flipCatalogThread(HFSPlusCatalogThread* record, int out);
BTree* openCatalogTree(io_func* file);
int updateCatalog(Volume* volume, HFSPlusCatalogRecord* catalogRecord);
int move(const char* source, const char* dest, Volume* volume);
int removeFile(const char* fileName, Volume* volume);
HFSCatalogNodeID newFolder(const char* pathName, Volume* volume);
HFSCatalogNodeID newFile(const char* pathName, Volume* volume);
int chmodFile(const char* pathName, int mode, Volume* volume);
int chownFile(const char* pathName, uint32_t owner, uint32_t group, Volume* volume);
int makeSymlink(const char* pathName, const char* target, Volume* volume);
HFSCatalogNodeID getMetadataDirectoryID(Volume* volume);
HFSPlusCatalogRecord* getRecordByCNID(HFSCatalogNodeID CNID, Volume* volume);
HFSPlusCatalogRecord* getLinkTarget(HFSPlusCatalogRecord* record, HFSCatalogNodeID parentID, HFSPlusCatalogKey *key, Volume* volume);
CatalogRecordList* getFolderContents(HFSCatalogNodeID CNID, Volume* volume);
HFSPlusCatalogRecord* getRecordFromPath(const char* path, Volume* volume, char **name, HFSPlusCatalogKey* retKey);
HFSPlusCatalogRecord* getRecordFromPath2(const char* path, Volume* volume, char **name, HFSPlusCatalogKey* retKey, char traverse);
HFSPlusCatalogRecord* getRecordFromPath3(const char* path, Volume* volume, char **name, HFSPlusCatalogKey* retKey, char traverse, char returnLink, HFSCatalogNodeID parentID);
void releaseCatalogRecordList(CatalogRecordList* list);
int isBlockUsed(Volume* volume, uint32_t block);
int setBlockUsed(Volume* volume, uint32_t block, int used);
int allocate(RawFile* rawFile, off_t size);
void flipForkData(HFSPlusForkData* forkData);
Volume* openVolume(io_func* io);
void closeVolume(Volume *volume);
int updateVolume(Volume* volume);
int debugBTree(BTree* tree, int displayTree);
int addToBTree(BTree* tree, BTKey* searchKey, size_t length, unsigned char* content);
int removeFromBTree(BTree* tree, BTKey* searchKey);
int32_t FastUnicodeCompare ( register uint16_t str1[], register uint16_t length1,
register uint16_t str2[], register uint16_t length2);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,5 @@
img3fs: img3fs.c
gcc -o $@ $^ -Wall -lfuse_ino64 -lcrypto -I/usr/local/include/osxfuse || gcc -o $@ $^ -Wall -losxfuse_i64 -lcrypto -I/usr/local/include/osxfuse
clean:
rm img3fs

View File

@ -0,0 +1,12 @@
FUSE img3 filesystem
read/write/encryption support
Usage example:
mkdir /tmp/img3
img3fs /tmp/img3 038-0032-002.dmg -iv 9b20ae16bebf4cf1b9101374c3ab0095 -key 06849aead2e9a6ca8a82c3929bad5c2368942e3681a3d5751720d2aacf0694c0
hdiutil attach /tmp/img3/DATA.dmg
rm -rf /Volumes/ramdisk/usr/local/standalone/firmware/*
echo "Hello World!" > /Volumes/ramdisk/hello.txt
hdiutil eject /Volumes/ramdisk
umount /tmp/img3

View File

@ -0,0 +1,466 @@
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stddef.h>
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <unistd.h>
#include <openssl/evp.h>
#define _FILE_OFFSET_BITS 64
#define FUSE_USE_VERSION 26
#include <fuse.h>
#define MAX_IMG3_ELEMENTS 15
struct img3_config
{
char *img3filename;
char *iv;
char *key;
};
#define MYFS_OPT(t, p, v) { t, offsetof(struct img3_config, p), v }
static struct fuse_opt img3_opts[] = {
MYFS_OPT("-iv %s", iv, 0),
MYFS_OPT("-key %s", key, 0),
FUSE_OPT_END
};
typedef struct IMG3Header
{
uint32_t magic;
uint32_t fullSize;
uint32_t sizeNoPack;
uint32_t sigCheckArea;
uint32_t iden;
} __attribute__((packed)) IMG3Header;
typedef struct IMG3Element
{
uint32_t magic;
uint32_t total_length;
uint32_t data_length;
uint32_t offset;
char name[10];
} __attribute__((packed)) IMG3Element;
typedef struct KBAG
{
uint32_t cryptState;// 1 if the key and IV in the KBAG are encrypted with the GID-key
// 2 is used with a second KBAG for the S5L8920, use is unknown.
uint32_t aesType; // 0x80 = aes-128, 0xc0 = aes-192, 0x100 = aes256
char EncIV[16];
union
{
char EncKey128[16];
char EncKey192[24];
char EncKey256[32];
} key;
} KBAG;
typedef struct IMG3
{
int fd;
uint8_t* mmap;
uint32_t aesType;//0=no aes, 0x80 = aes-128, 0xc0 = aes-192, 0x100 = aes256
const EVP_CIPHER* cipherType;
uint8_t iv[16];
uint8_t key[32];
uint8_t* decrypted_data;
int data_was_modified;
uint32_t size;
struct IMG3Header header;
uint32_t num_elements;
struct IMG3Element* data_element;
struct IMG3Element elements[MAX_IMG3_ELEMENTS];
} IMG3;
void hexToBytes(const char* hex, uint8_t* buffer, size_t bufferLen) {
size_t i;
for(i = 0; i < bufferLen && *hex != '\0'; i++) {
uint32_t byte;
sscanf(hex, "%02x", &byte);
buffer[i] = byte;
hex += 2;
}
}
/**
Check for magic constants/strings in decrypted data to get an idea if the IV/key were ok
**/
char* img3_check_decrypted_data(const uint8_t* buffer, uint32_t len)
{
if (len > 16 && !strncmp("complzss", buffer, 8))
{
return "kernelcache";
}
if (len > 0x800 && !strncmp("H+", &buffer[0x400], 2))
{
return "ramdisk";
}
if (len > 0x300 && !strncmp("iBoot", &buffer[0x280], 5))
{
return "bootloader";
}
//TODO devicetree, logos
return NULL;
}
IMG3* img3_init(struct img3_config* config)
{
IMG3* img3 = NULL;
struct stat st;
uint32_t len,offset,i,keylen;
if(stat(config->img3filename, &st) == -1)
{
perror("stat");
return NULL;
}
len = st.st_size;
int fd = open(config->img3filename, O_RDWR);
if (fd == -1)
{
perror("open");
return NULL;
}
img3 = malloc(sizeof(IMG3));
if (img3 == NULL)
{
perror("malloc");
return NULL;
}
img3->fd = fd;
img3->size = len;
img3->num_elements = 0;
img3->aesType = 0;
img3->data_was_modified = 0;
img3->cipherType = NULL;
img3->decrypted_data = NULL;
img3->data_element = NULL;
img3->mmap = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (img3->mmap == (void*) -1)
{
perror("mmap");
free(img3);
return NULL;
}
keylen = 0;
if (config->iv != NULL && config->key != NULL)
{
if(strlen(config->iv) != 32)
{
printf("IV must be 16 bytes\n");
free(img3);
return NULL;
}
keylen = strlen(config->key);
if (keylen != 32 && keylen != 64 && keylen != 48)
{
printf("Key must be 16,24 or 32 bytes\n");
free(img3);
return NULL;
}
hexToBytes(config->iv, img3->iv, 16);
hexToBytes(config->key, img3->key, 32);
}
if(read(fd, &img3->header, sizeof(IMG3Header)) != sizeof(IMG3Header))
{
perror("read IMG3 header");
free(img3);
return NULL;
}
if(img3->header.magic != 'Img3' || img3->header.fullSize != len)
{
printf("bad magic or len\n");
free(img3);
return NULL;
}
for(offset=sizeof(IMG3Header),i=0; offset < len && i < MAX_IMG3_ELEMENTS; i++)
{
if(lseek(fd, offset, SEEK_SET) == -1)
break;
if(read(fd, &img3->elements[i], 12) != 12)
break;
if(img3->elements[i].total_length < 12)
break;
if(img3->elements[i].data_length > img3->elements[i].total_length)
break;
if(offset + img3->elements[i].data_length < offset)
break;
if(offset + img3->elements[i].total_length < offset)
break;
if(offset + img3->elements[i].total_length > len)
break;
img3->elements[i].offset = offset + 12;
img3->elements[i].name[0] = (img3->elements[i].magic & 0xff000000) >> 24;
img3->elements[i].name[1] = (img3->elements[i].magic & 0xff0000) >> 16;
img3->elements[i].name[2] = (img3->elements[i].magic & 0xff00) >> 8;
img3->elements[i].name[3] = (img3->elements[i].magic & 0xff);
img3->elements[i].name[4] = 0;
printf("TAG: %s OFFSET %x data_length:%x\n", img3->elements[i].name, offset, img3->elements[i].data_length);
if (img3->elements[i].magic == 'KBAG')
{
KBAG* kbag = (KBAG*) &(img3->mmap[offset+12]);
if(kbag->cryptState == 1)
{
if( kbag->aesType != 0x80 && kbag->aesType != 0xC0 && kbag->aesType != 0x100)
{
printf("Unknown aesType %x\n", kbag->aesType);
}
else if (keylen*4 != kbag->aesType)
{
printf("Wrong length for key parameter, got %d, aesType is %x\n", keylen, kbag->aesType);
free(img3);
return NULL;
}
else
{
printf("KBAG cryptState=%x aesType=%x\n", kbag->cryptState, kbag->aesType);
img3->aesType = kbag->aesType;
}
}
}
else if (img3->elements[i].magic == 'DATA')
{
img3->data_element = &img3->elements[i];
if (img3->header.iden == 'rdsk')
{
//XXX hdiutil fails if extension is not .dmg
strcpy(img3->elements[i].name, "DATA.dmg");
}
}
offset += img3->elements[i].total_length;
}
img3->num_elements = i;
if(img3->data_element != NULL && img3->aesType != 0)
{
img3->decrypted_data = malloc(img3->data_element->data_length);
if (img3->decrypted_data == NULL)
{
perror("FAIL: malloc(img3->data_element->data_length)");
free(img3);
return NULL;
}
switch(img3->aesType)
{
case 0x80:
img3->cipherType = EVP_aes_128_cbc();
break;
case 0xC0:
img3->cipherType = EVP_aes_192_cbc();
break;
case 0x100:
img3->cipherType = EVP_aes_256_cbc();
break;
default:
return img3; //should not reach
}
EVP_CIPHER_CTX ctx;
uint32_t decryptedLength = (img3->data_element->total_length - 12) & ~0xf;
printf("Decrypting DATA section\n");
EVP_CIPHER_CTX_init(&ctx);
EVP_DecryptInit_ex(&ctx, img3->cipherType, NULL, img3->key, img3->iv);
EVP_DecryptUpdate(&ctx, img3->decrypted_data, &decryptedLength,
&img3->mmap[img3->data_element->offset], decryptedLength);
char* info = img3_check_decrypted_data(img3->decrypted_data, decryptedLength);
if(info != NULL)
{
printf("Decrypted data seems OK : %s\n", info);
}
else
{
printf("Unknown decrypted data, key/iv might be wrong\n");
}
}
return img3;
}
static IMG3* img3 = NULL;
static void img3_destroy()
{
if (img3->aesType != 0 && img3->decrypted_data != NULL && img3->data_was_modified)
{
EVP_CIPHER_CTX ctx;
uint32_t encryptedLength = img3->data_element->total_length - 12;
//printf("Encrypting DATA section\n");
EVP_CIPHER_CTX_init(&ctx);
EVP_EncryptInit_ex(&ctx, img3->cipherType, NULL, img3->key, img3->iv);
EVP_EncryptUpdate(&ctx, &img3->mmap[img3->data_element->offset], &encryptedLength,
img3->decrypted_data, encryptedLength);
}
}
static int
img3_getattr(const char *path, struct stat *stbuf)
{
int i;
memset(stbuf, 0, sizeof(struct stat));
if(!strcmp(path, "/"))
{
stbuf->st_mode = S_IFDIR | 0777;
stbuf->st_nlink = 3;
return 0;
}
for(i=0; i < img3->num_elements; i++)
{
if(!strcmp(path+1, img3->elements[i].name))
{
stbuf->st_mode = S_IFREG | 0666;
stbuf->st_nlink = 1;
stbuf->st_size = img3->elements[i].data_length;
return 0;
}
}
return -ENOENT;
}
static int
img3_open(const char *path, struct fuse_file_info *fi)
{
int i;
for(i=0; i < img3->num_elements; i++)
{
if(!strcmp(path+1, img3->elements[i].name))
{
fi->fh = i;
return 0;
}
}
return -ENOENT;
}
static int
img3_readdir(const char *path, void *buf, fuse_fill_dir_t filler,
off_t offset, struct fuse_file_info *fi)
{
int i;
if(strcmp(path, "/"))
{
return -ENOENT;
}
filler(buf, ".", NULL, 0);
filler(buf, "..", NULL, 0);
for(i=0; i < img3->num_elements; i++)
{
filler(buf, img3->elements[i].name, NULL, 0);
}
return 0;
}
static int
img3_read(const char *path, char *buf, size_t size, off_t offset,
struct fuse_file_info *fi)
{
IMG3Element* element = &img3->elements[fi->fh];
if (offset >= element->data_length) {
return 0;
}
if (offset + size > element->data_length) { /* Trim the read to the file size. */
size = element->data_length - offset;
}
if (img3->aesType != 0 && element == img3->data_element)
{
memcpy(buf, img3->decrypted_data + offset, size);
return size;
}
lseek(img3->fd, element->offset + offset, SEEK_SET);
return read(img3->fd, buf, size);
}
static int
img3_write(const char *path, const char *buf, size_t size, off_t offset,
struct fuse_file_info *fi)
{
IMG3Element* element = &img3->elements[fi->fh];
if (offset >= element->data_length) {
return 0;
}
if (offset + size > element->data_length) { /* Trim the write to the file size. */
size = element->data_length - offset;
}
if (img3->aesType != 0 && element == img3->data_element)
{
img3->data_was_modified = 1;
memcpy(img3->decrypted_data + offset, buf, size);
return size;
}
lseek(img3->fd, element->offset + offset, SEEK_SET);
return write(img3->fd, buf, size);
}
static struct fuse_operations img3_filesystem_operations = {
.getattr = img3_getattr,
.open = img3_open,
.read = img3_read,
.write = img3_write,
.readdir = img3_readdir,
.destroy = img3_destroy
};
static int img3_opt_proc(void *data, const char *arg, int key, struct fuse_args *outargs)
{
static int i = -1;
struct img3_config* config = (struct img3_config*) data;
i++;
if (key == FUSE_OPT_KEY_NONOPT && i == 1)
{
config->img3filename = strdup(arg);
return 0;
}
return 1;
}
int main(int argc, char **argv)
{
struct fuse_args args = FUSE_ARGS_INIT(argc, argv);
struct img3_config commandline_conf;
memset(&commandline_conf, 0, sizeof(commandline_conf));
fuse_opt_parse(&args, &commandline_conf, img3_opts, img3_opt_proc);
if (commandline_conf.img3filename == NULL)
{
printf("Usage %s mountpoint img3filename [-key KEY -iv IV]\n", argv[0]);
return -1;
}
img3 = img3_init(&commandline_conf);
if (img3 != NULL)
{
return fuse_main(args.argc, args.argv, &img3_filesystem_operations, img3_opt_proc);
}
return 0;
}

View File

@ -0,0 +1,3 @@
Dependencies
pycrypto (https://www.dlitz.net/software/pycrypto/)
construct (http://construct.wikispaces.com/)

View File

@ -0,0 +1,78 @@
from backups.backup3 import decrypt_backup3
from backups.backup4 import MBDB
from keystore.keybag import Keybag
from util import readPlist, makedirs
import os
import sys
import plistlib
showinfo = ["Device Name", "Display Name", "Last Backup Date", "IMEI",
"Serial Number", "Product Type", "Product Version", "iTunes Version"]
def extract_backup(backup_path, output_path, password=""):
if not os.path.exists(backup_path + "/Manifest.plist"):
print "Manifest.plist not found"
return
manifest = readPlist(backup_path + "/Manifest.plist")
info = readPlist( backup_path + "/Info.plist")
for i in showinfo:
print i + " : " + unicode(info.get(i, "missing"))
print "Extract backup to %s ? (y/n)" % output_path
if raw_input() == "n":
return
print "Backup is %sencrypted" % (int(not manifest["IsEncrypted"]) * "not ")
if manifest["IsEncrypted"] and password == "":
print "Enter backup password : "
password = raw_input()
if not manifest.has_key("BackupKeyBag"):
print "No BackupKeyBag in manifest, assuming iOS 3.x backup"
decrypt_backup3(backup_path, output_path, password)
else:
mbdb = MBDB(backup_path)
kb = Keybag.createWithBackupManifest(manifest, password)
if not kb:
return
manifest["password"] = password
makedirs(output_path)
plistlib.writePlist(manifest, output_path + "/Manifest.plist")
mbdb.keybag = kb
mbdb.extract_backup(output_path)
print "You can decrypt the keychain using the following command : "
print "python keychain_tool.py -d \"%s\" \"%s\"" % (output_path + "/KeychainDomain/keychain-backup.plist", output_path + "/Manifest.plist")
def extract_all():
if sys.platform == "win32":
mobilesync = os.environ["APPDATA"] + "/Apple Computer/MobileSync/Backup/"
elif sys.platform == "darwin":
mobilesync = os.environ["HOME"] + "/Library/Application Support/MobileSync/Backup/"
else:
print "Unsupported operating system"
return
print "-" * 60
print "Searching for iTunes backups"
print "-" * 60
for udid in os.listdir(mobilesync):
extract_backup(mobilesync + "/" + udid, udid + "_extract")
def main():
if len(sys.argv) < 2:
print "Usage: %s <backup path> [output path]" % sys.argv[0]
return
backup_path = sys.argv[1]
output_path = os.path.dirname(backup_path) + "_extract"
if len(sys.argv) >= 3:
output_path = sys.argv[2]
extract_backup(backup_path, output_path)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,67 @@
from crypto.PBKDF2 import PBKDF2
from crypto.aes import AESdecryptCBC
from util import read_file, write_file, makedirs, readPlist
from util.bplist import BPlistReader
import hashlib
import struct
import glob
import sys
import os
"""
decrypt iOS 3 backup blob (metadata and file contents)
"""
def decrypt_blob(blob, auth_key):
len = struct.unpack(">H", blob[0:2])[0]
if len != 66:
print "blob len != 66"
magic = struct.unpack(">H", blob[2:4])[0]
if magic != 0x0100:
print "magic != 0x0100"
iv = blob[4:20]
blob_key = AESdecryptCBC(blob[20:68], auth_key, iv)[:32]
return AESdecryptCBC(blob[68:], blob_key, iv, padding=True)
def decrypt_backup3(backupfolder, outputfolder, passphrase):
auth_key = None
manifest = readPlist(backupfolder + "/Manifest.plist")
if manifest["IsEncrypted"]:
manifest_data = manifest["Data"].data
authdata = manifest["AuthData"].data
pkbdf_salt = authdata[:8]
iv = authdata[8:24]
key = PBKDF2(passphrase,pkbdf_salt,iterations=2000).read(32)
data = AESdecryptCBC(authdata[24:], key, iv)
auth_key = data[:32]
if hashlib.sha1(auth_key).digest() != data[32:52]:
print "wrong auth key (hash mismatch) => wrong passphrase"
return
print "Passphrase seems OK"
for mdinfo_name in glob.glob(backupfolder + "/*.mdinfo"):
mddata_name = mdinfo_name[:-7] + ".mddata"
mdinfo = readPlist(mdinfo_name)
metadata = mdinfo["Metadata"].data
if mdinfo["IsEncrypted"]:
metadata = decrypt_blob(metadata, auth_key)
metadata = BPlistReader.plistWithString(metadata)
print metadata["Path"]
filedata = read_file(mddata_name)
if mdinfo["IsEncrypted"]:
filedata = decrypt_blob(filedata, auth_key)
filename = metadata["Path"]
makedirs(outputfolder + "/" + os.path.dirname(filename))
write_file(outputfolder + "/" + filename, filedata)

View File

@ -0,0 +1,174 @@
from Crypto.Cipher import AES
from hashlib import sha1
from struct import unpack
import os
MBDB_SIGNATURE = 'mbdb\x05\x00'
MASK_SYMBOLIC_LINK = 0xa000
MASK_REGULAR_FILE = 0x8000
MASK_DIRECTORY = 0x4000
def warn(msg):
print "WARNING: %s" % msg
class MBFileRecord(object):
def __init__(self, mbdb):
self.domain = self._decode_string(mbdb)
if self.domain is None:
warn("Domain name missing from record")
self.path = self._decode_string(mbdb)
if self.path is None:
warn("Relative path missing from record")
self.target= self._decode_string(mbdb) # for symbolic links
self.digest = self._decode_string(mbdb)
self.encryption_key = self._decode_data(mbdb)
data = mbdb.read(40) # metadata, fixed size
self.mode, = unpack('>H', data[0:2])
if not(self.is_regular_file() or self.is_symbolic_link() or self.is_directory()):
print self.mode
warn("File type mising from record mode")
if self.is_symbolic_link() and self.target is None:
warn("Target required for symblolic links")
self.inode_number = unpack('>Q', data[2:10])
self.user_id, = unpack('>I', data[10:14])
self.group_id = unpack('>I', data[14:18])
self.last_modification_time, = unpack('>i', data[18:22])
self.last_status_change_time, = unpack('>i', data[22:26])
self.birth_time, = unpack('>i', data[26:30])
self.size, = unpack('>q', data[30:38])
if self.size != 0 and not self.is_regular_file():
warn("Non-zero size for a record which is not a regular file")
self.protection_class = ord(data[38])
num_attributes = ord(data[39])
if num_attributes == 0:
self.extended_attributes = None
else:
self.extended_attributes = {}
for i in xrange(num_attributes):
k = self._decode_string(mbdb)
v = self._decode_data(mbdb)
self.extended_attributes[k] = v
def _decode_string(self, s):
s_len, = unpack('>H', s.read(2))
if s_len == 0xffff:
return None
return s.read(s_len)
def _decode_data(self, s):
return self._decode_string(s)
def type(self):
return self.mode & 0xf000
def is_symbolic_link(self):
return self.type() == MASK_SYMBOLIC_LINK
def is_regular_file(self):
return self.type() == MASK_REGULAR_FILE
def is_directory(self):
return self.type() == MASK_DIRECTORY
class MBDB(object):
def __init__(self, path):
self.files = {}
self.backup_path = path
self.keybag = None
# open the database
mbdb = file(path + '/Manifest.mbdb', 'rb')
# skip signature
signature = mbdb.read(len(MBDB_SIGNATURE))
if signature != MBDB_SIGNATURE:
raise Exception("Bad mbdb signature")
try:
while True:
rec = MBFileRecord(mbdb)
fn = rec.domain + "-" + rec.path
sb = sha1(fn).digest().encode('hex')
if len(sb) % 2 == 1:
sb = '0'+sb
self.files[sb] = rec
except:
mbdb.close()
def get_file_by_name(self, filename):
for (k, v) in self.files.iteritems():
if v.path == filename:
return (k, v)
return None
def extract_backup(self, output_path):
for record in self.files.values():
# create directories if they do not exist
# makedirs throw an exception, my code is ugly =)
if record.is_directory():
try:
os.makedirs(os.path.join(output_path, record.domain, record.path))
except:
pass
for (filename, record) in self.files.items():
# skip directories
if record.is_directory():
continue
self.extract_file(filename, record, output_path)
def extract_file(self, filename, record, output_path):
# adjust output file name
if record.is_symbolic_link():
out_file = record.target
else:
out_file = record.path
# read backup file
try:
f1 = file(os.path.join(self.backup_path, filename), 'rb')
except(IOError):
warn("File %s (%s) has not been found" % (filename, record.path))
return
# write output file
output_path = os.path.join(output_path, record.domain, out_file)
print("Writing %s" % output_path)
f2 = file(output_path, 'wb')
aes = None
if record.encryption_key is not None and self.keybag: # file is encrypted!
key = self.keybag.unwrapKeyForClass(record.protection_class, record.encryption_key[4:])
if not key:
warn("Cannot unwrap key")
return
aes = AES.new(key, AES.MODE_CBC, "\x00"*16)
while True:
data = f1.read(8192)
if not data:
break
if aes:
data2 = data = aes.decrypt(data)
f2.write(data)
f1.close()
if aes:
c = data2[-1]
i = ord(c)
if i < 17 and data2.endswith(c*i):
f2.truncate(f2.tell() - i)
else:
warn("Bad padding, last byte = 0x%x !" % i)
f2.close()

View File

@ -0,0 +1,354 @@
#!/usr/bin/python
# -*- coding: ascii -*-
###########################################################################
# PBKDF2.py - PKCS#5 v2.0 Password-Based Key Derivation
#
# Copyright (C) 2007, 2008 Dwayne C. Litzenberger <dlitz@dlitz.net>
# All rights reserved.
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose and without fee is hereby granted,
# provided that the above copyright notice appear in all copies and that
# both that copyright notice and this permission notice appear in
# supporting documentation.
#
# THE AUTHOR PROVIDES THIS SOFTWARE ``AS IS'' AND ANY EXPRESSED OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Country of origin: Canada
#
###########################################################################
# Sample PBKDF2 usage:
# from Crypto.Cipher import AES
# from PBKDF2 import PBKDF2
# import os
#
# salt = os.urandom(8) # 64-bit salt
# key = PBKDF2("This passphrase is a secret.", salt).read(32) # 256-bit key
# iv = os.urandom(16) # 128-bit IV
# cipher = AES.new(key, AES.MODE_CBC, iv)
# ...
#
# Sample crypt() usage:
# from PBKDF2 import crypt
# pwhash = crypt("secret")
# alleged_pw = raw_input("Enter password: ")
# if pwhash == crypt(alleged_pw, pwhash):
# print "Password good"
# else:
# print "Invalid password"
#
###########################################################################
# History:
#
# 2007-07-27 Dwayne C. Litzenberger <dlitz@dlitz.net>
# - Initial Release (v1.0)
#
# 2007-07-31 Dwayne C. Litzenberger <dlitz@dlitz.net>
# - Bugfix release (v1.1)
# - SECURITY: The PyCrypto XOR cipher (used, if available, in the _strxor
# function in the previous release) silently truncates all keys to 64
# bytes. The way it was used in the previous release, this would only be
# problem if the pseudorandom function that returned values larger than
# 64 bytes (so SHA1, SHA256 and SHA512 are fine), but I don't like
# anything that silently reduces the security margin from what is
# expected.
#
# 2008-06-17 Dwayne C. Litzenberger <dlitz@dlitz.net>
# - Compatibility release (v1.2)
# - Add support for older versions of Python (2.2 and 2.3).
#
###########################################################################
__version__ = "1.2"
from struct import pack
from binascii import b2a_hex
from random import randint
import string
try:
# Use PyCrypto (if available)
from Crypto.Hash import HMAC, SHA as SHA1
except ImportError:
# PyCrypto not available. Use the Python standard library.
import hmac as HMAC
import sha as SHA1
def strxor(a, b):
return "".join([chr(ord(x) ^ ord(y)) for (x, y) in zip(a, b)])
def b64encode(data, chars="+/"):
tt = string.maketrans("+/", chars)
return data.encode('base64').replace("\n", "").translate(tt)
class PBKDF2(object):
"""PBKDF2.py : PKCS#5 v2.0 Password-Based Key Derivation
This implementation takes a passphrase and a salt (and optionally an
iteration count, a digest module, and a MAC module) and provides a
file-like object from which an arbitrarily-sized key can be read.
If the passphrase and/or salt are unicode objects, they are encoded as
UTF-8 before they are processed.
The idea behind PBKDF2 is to derive a cryptographic key from a
passphrase and a salt.
PBKDF2 may also be used as a strong salted password hash. The
'crypt' function is provided for that purpose.
Remember: Keys generated using PBKDF2 are only as strong as the
passphrases they are derived from.
"""
def __init__(self, passphrase, salt, iterations=1000,
digestmodule=SHA1, macmodule=HMAC):
self.__macmodule = macmodule
self.__digestmodule = digestmodule
self._setup(passphrase, salt, iterations, self._pseudorandom)
def _pseudorandom(self, key, msg):
"""Pseudorandom function. e.g. HMAC-SHA1"""
return self.__macmodule.new(key=key, msg=msg,
digestmod=self.__digestmodule).digest()
def read(self, bytes):
"""Read the specified number of key bytes."""
if self.closed:
raise ValueError("file-like object is closed")
size = len(self.__buf)
blocks = [self.__buf]
i = self.__blockNum
while size < bytes:
i += 1
if i > 0xffffffffL or i < 1:
# We could return "" here, but
raise OverflowError("derived key too long")
block = self.__f(i)
blocks.append(block)
size += len(block)
buf = "".join(blocks)
retval = buf[:bytes]
self.__buf = buf[bytes:]
self.__blockNum = i
return retval
def __f(self, i):
# i must fit within 32 bits
assert 1 <= i <= 0xffffffffL
U = self.__prf(self.__passphrase, self.__salt + pack("!L", i))
result = U
for j in xrange(2, 1+self.__iterations):
U = self.__prf(self.__passphrase, U)
result = strxor(result, U)
return result
def hexread(self, octets):
"""Read the specified number of octets. Return them as hexadecimal.
Note that len(obj.hexread(n)) == 2*n.
"""
return b2a_hex(self.read(octets))
def _setup(self, passphrase, salt, iterations, prf):
# Sanity checks:
# passphrase and salt must be str or unicode (in the latter
# case, we convert to UTF-8)
if isinstance(passphrase, unicode):
passphrase = passphrase.encode("UTF-8")
if not isinstance(passphrase, str):
raise TypeError("passphrase must be str or unicode")
if isinstance(salt, unicode):
salt = salt.encode("UTF-8")
if not isinstance(salt, str):
raise TypeError("salt must be str or unicode")
# iterations must be an integer >= 1
if not isinstance(iterations, (int, long)):
raise TypeError("iterations must be an integer")
if iterations < 1:
raise ValueError("iterations must be at least 1")
# prf must be callable
if not callable(prf):
raise TypeError("prf must be callable")
self.__passphrase = passphrase
self.__salt = salt
self.__iterations = iterations
self.__prf = prf
self.__blockNum = 0
self.__buf = ""
self.closed = False
def close(self):
"""Close the stream."""
if not self.closed:
del self.__passphrase
del self.__salt
del self.__iterations
del self.__prf
del self.__blockNum
del self.__buf
self.closed = True
def crypt(word, salt=None, iterations=None):
"""PBKDF2-based unix crypt(3) replacement.
The number of iterations specified in the salt overrides the 'iterations'
parameter.
The effective hash length is 192 bits.
"""
# Generate a (pseudo-)random salt if the user hasn't provided one.
if salt is None:
salt = _makesalt()
# salt must be a string or the us-ascii subset of unicode
if isinstance(salt, unicode):
salt = salt.encode("us-ascii")
if not isinstance(salt, str):
raise TypeError("salt must be a string")
# word must be a string or unicode (in the latter case, we convert to UTF-8)
if isinstance(word, unicode):
word = word.encode("UTF-8")
if not isinstance(word, str):
raise TypeError("word must be a string or unicode")
# Try to extract the real salt and iteration count from the salt
if salt.startswith("$p5k2$"):
(iterations, salt, dummy) = salt.split("$")[2:5]
if iterations == "":
iterations = 400
else:
converted = int(iterations, 16)
if iterations != "%x" % converted: # lowercase hex, minimum digits
raise ValueError("Invalid salt")
iterations = converted
if not (iterations >= 1):
raise ValueError("Invalid salt")
# Make sure the salt matches the allowed character set
allowed = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789./"
for ch in salt:
if ch not in allowed:
raise ValueError("Illegal character %r in salt" % (ch,))
if iterations is None or iterations == 400:
iterations = 400
salt = "$p5k2$$" + salt
else:
salt = "$p5k2$%x$%s" % (iterations, salt)
rawhash = PBKDF2(word, salt, iterations).read(24)
return salt + "$" + b64encode(rawhash, "./")
# Add crypt as a static method of the PBKDF2 class
# This makes it easier to do "from PBKDF2 import PBKDF2" and still use
# crypt.
PBKDF2.crypt = staticmethod(crypt)
def _makesalt():
"""Return a 48-bit pseudorandom salt for crypt().
This function is not suitable for generating cryptographic secrets.
"""
binarysalt = "".join([pack("@H", randint(0, 0xffff)) for i in range(3)])
return b64encode(binarysalt, "./")
def test_pbkdf2():
"""Module self-test"""
from binascii import a2b_hex
#
# Test vectors from RFC 3962
#
# Test 1
result = PBKDF2("password", "ATHENA.MIT.EDUraeburn", 1).read(16)
expected = a2b_hex("cdedb5281bb2f801565a1122b2563515")
if result != expected:
raise RuntimeError("self-test failed")
# Test 2
result = PBKDF2("password", "ATHENA.MIT.EDUraeburn", 1200).hexread(32)
expected = ("5c08eb61fdf71e4e4ec3cf6ba1f5512b"
"a7e52ddbc5e5142f708a31e2e62b1e13")
if result != expected:
raise RuntimeError("self-test failed")
# Test 3
result = PBKDF2("X"*64, "pass phrase equals block size", 1200).hexread(32)
expected = ("139c30c0966bc32ba55fdbf212530ac9"
"c5ec59f1a452f5cc9ad940fea0598ed1")
if result != expected:
raise RuntimeError("self-test failed")
# Test 4
result = PBKDF2("X"*65, "pass phrase exceeds block size", 1200).hexread(32)
expected = ("9ccad6d468770cd51b10e6a68721be61"
"1a8b4d282601db3b36be9246915ec82a")
if result != expected:
raise RuntimeError("self-test failed")
#
# Other test vectors
#
# Chunked read
f = PBKDF2("kickstart", "workbench", 256)
result = f.read(17)
result += f.read(17)
result += f.read(1)
result += f.read(2)
result += f.read(3)
expected = PBKDF2("kickstart", "workbench", 256).read(40)
if result != expected:
raise RuntimeError("self-test failed")
#
# crypt() test vectors
#
# crypt 1
result = crypt("cloadm", "exec")
expected = '$p5k2$$exec$r1EWMCMk7Rlv3L/RNcFXviDefYa0hlql'
if result != expected:
raise RuntimeError("self-test failed")
# crypt 2
result = crypt("gnu", '$p5k2$c$u9HvcT4d$.....')
expected = '$p5k2$c$u9HvcT4d$Sd1gwSVCLZYAuqZ25piRnbBEoAesaa/g'
if result != expected:
raise RuntimeError("self-test failed")
# crypt 3
result = crypt("dcl", "tUsch7fU", iterations=13)
expected = "$p5k2$d$tUsch7fU$nqDkaxMDOFBeJsTSfABsyn.PYUXilHwL"
if result != expected:
raise RuntimeError("self-test failed")
# crypt 4 (unicode)
result = crypt(u'\u0399\u03c9\u03b1\u03bd\u03bd\u03b7\u03c2',
'$p5k2$$KosHgqNo$9mjN8gqjt02hDoP0c2J0ABtLIwtot8cQ')
expected = '$p5k2$$KosHgqNo$9mjN8gqjt02hDoP0c2J0ABtLIwtot8cQ'
if result != expected:
raise RuntimeError("self-test failed")
if __name__ == '__main__':
test_pbkdf2()
# vim:set ts=4 sw=4 sts=4 expandtab:

View File

@ -0,0 +1,26 @@
from Crypto.Cipher import AES
ZEROIV = "\x00"*16
def removePadding(blocksize, s):
'Remove rfc 1423 padding from string.'
n = ord(s[-1]) # last byte contains number of padding bytes
if n > blocksize or n > len(s):
raise Exception('invalid padding')
return s[:-n]
def AESdecryptCBC(data, key, iv=ZEROIV, padding=False):
if len(data) % 16:
print "AESdecryptCBC: data length not /16, truncating"
data = data[0:(len(data)/16) * 16]
data = AES.new(key, AES.MODE_CBC, iv).decrypt(data)
if padding:
return removePadding(16, data)
return data
def AESencryptCBC(data, key, iv=ZEROIV, padding=False):
if len(data) % 16:
print "AESdecryptCBC: data length not /16, truncating"
data = data[0:(len(data)/16) * 16]
data = AES.new(key, AES.MODE_CBC, iv).encrypt(data)
return data

View File

@ -0,0 +1,70 @@
import struct
from Crypto.Cipher import AES
"""
http://www.ietf.org/rfc/rfc3394.txt
quick'n'dirty AES wrap implementation
used by iOS 4 KeyStore kernel extension for wrapping/unwrapping encryption keys
"""
def unpack64bit(s):
return struct.unpack(">Q",s)[0]
def pack64bit(s):
return struct.pack(">Q",s)
def AESUnwrap(kek, wrapped):
C = []
for i in xrange(len(wrapped)/8):
C.append(unpack64bit(wrapped[i*8:i*8+8]))
n = len(C) - 1
R = [0] * (n+1)
A = C[0]
for i in xrange(1,n+1):
R[i] = C[i]
for j in reversed(xrange(0,6)):
for i in reversed(xrange(1,n+1)):
todec = pack64bit(A ^ (n*j+i))
todec += pack64bit(R[i])
B = AES.new(kek).decrypt(todec)
A = unpack64bit(B[:8])
R[i] = unpack64bit(B[8:])
#assert A == 0xa6a6a6a6a6a6a6a6, "AESUnwrap: integrity check FAIL, wrong kek ?"
if A != 0xa6a6a6a6a6a6a6a6:
#print "AESUnwrap: integrity check FAIL, wrong kek ?"
return None
res = "".join(map(pack64bit, R[1:]))
return res
def AESwrap(kek, data):
A = 0xa6a6a6a6a6a6a6a6
R = [0]
for i in xrange(len(data)/8):
R.append(unpack64bit(data[i*8:i*8+8]))
n = len(R) - 1
for j in xrange(0,6):
for i in xrange(1,n+1):
B = AES.new(kek).encrypt(pack64bit(A) + pack64bit(R[i]))
A = unpack64bit(B[:8]) ^ (n*j+i)
R[i] = unpack64bit(B[8:])
res = pack64bit(A) + "".join(map(pack64bit, R[1:]))
return res
if __name__ == "__main__":
#format (kek, data, expected_ciphertext)
test_vectors = [
("000102030405060708090A0B0C0D0E0F", "00112233445566778899AABBCCDDEEFF", "1FA68B0A8112B447AEF34BD8FB5A7B829D3E862371D2CFE5"),
("000102030405060708090A0B0C0D0E0F1011121314151617", "00112233445566778899AABBCCDDEEFF", "96778B25AE6CA435F92B5B97C050AED2468AB8A17AD84E5D"),
("000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F", "00112233445566778899AABBCCDDEEFF", "64E8C3F9CE0F5BA263E9777905818A2A93C8191E7D6E8AE7"),
("000102030405060708090A0B0C0D0E0F1011121314151617", "00112233445566778899AABBCCDDEEFF0001020304050607", "031D33264E15D33268F24EC260743EDCE1C6C7DDEE725A936BA814915C6762D2"),
("000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F", "00112233445566778899AABBCCDDEEFF0001020304050607", "A8F9BC1612C68B3FF6E6F4FBE30E71E4769C8B80A32CB8958CD5D17D6B254DA1"),
("000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F", "00112233445566778899AABBCCDDEEFF000102030405060708090A0B0C0D0E0F", "28C9F404C4B810F4CBCCB35CFB87F8263F5786E2D80ED326CBC7F0E71A99F43BFB988B9B7A02DD21")
]
for kek, data, expected in test_vectors:
ciphertext = AESwrap(kek.decode("hex"), data.decode("hex"))
assert ciphertext == expected.decode("hex")
assert AESUnwrap(kek.decode("hex"), ciphertext) == data.decode("hex")
print "All tests OK !"

View File

@ -0,0 +1,74 @@
from Crypto.Util import number
CURVE_P = (2**255 - 19)
CURVE_A = 121665
def curve25519_monty(x1, z1, x2, z2, qmqp):
a = (x1 + z1) * (x2 - z2) % CURVE_P
b = (x1 - z1) * (x2 + z2) % CURVE_P
x4 = (a + b) * (a + b) % CURVE_P
e = (a - b) * (a - b) % CURVE_P
z4 = e * qmqp % CURVE_P
a = (x1 + z1) * (x1 + z1) % CURVE_P
b = (x1 - z1) * (x1 - z1) % CURVE_P
x3 = a * b % CURVE_P
g = (a - b) % CURVE_P
h = (a + CURVE_A * g) % CURVE_P
z3 = (g * h) % CURVE_P
return x3, z3, x4, z4
def curve25519_mult(n, q):
nqpqx, nqpqz = q, 1
nqx, nqz = 1, 0
for i in range(255, -1, -1):
if (n >> i) & 1:
nqpqx,nqpqz,nqx,nqz = curve25519_monty(nqpqx, nqpqz, nqx, nqz, q)
else:
nqx,nqz,nqpqx,nqpqz = curve25519_monty(nqx, nqz, nqpqx, nqpqz, q)
return nqx, nqz
def curve25519(secret, basepoint):
a = ord(secret[0])
a &= 248
b = ord(secret[31])
b &= 127
b |= 64
s = chr(a) + secret[1:-1] + chr(b)
s = number.bytes_to_long(s[::-1])
basepoint = number.bytes_to_long(basepoint[::-1])
x, z = curve25519_mult(s, basepoint)
zmone = number.inverse(z, CURVE_P)
z = x * zmone % CURVE_P
return number.long_to_bytes(z)[::-1]
if __name__ == "__main__":
from crypto.aeswrap import AESUnwrap
from Crypto.Hash import SHA256
z="04000000080000000200000048000000000000000000000000000000000000000000000002917dc2542198edeb1078c4d1ebab74d9ca87890657ba02b9825dadf20a002f44360c6f87743fac0236df1f9eedbea801e31677aef3a09adfb4e10a37ae27facf419ab3ea3f39f4".decode("hex")
mysecret = "99b66345829d8c05041eea1ba1ed5b2984c3e5ec7a756ef053473c7f22b49f14".decode("hex")
mypublic = "b1c652786697a5feef36a56f36fde524a21193f4e563627977ab515f600fdb3a".decode("hex")
hispublic = z[36:36+32]
#c4d9fe462a2ebbf0745195ce7dc5e8b49947bbd5b42da74175d5f8125b44582b
shared = curve25519(mysecret, hispublic)
print shared.encode("hex")
h = SHA256.new()
h.update('\x00\x00\x00\x01')
h.update(shared)
h.update(hispublic)
h.update(mypublic)
md = h.digest()
#e442c81b91ea876d3cf42d3aea75f4b0c3f90f9fd045e1f5784b91260f3bdc9c
print AESUnwrap(md, z[32+36:]).encode("hex")

View File

@ -0,0 +1,129 @@
#!/usr/bin/env python
from Crypto.Cipher import AES
from Crypto.Util import strxor
from struct import pack, unpack
def gcm_rightshift(vec):
for x in range(15, 0, -1):
c = vec[x] >> 1
c |= (vec[x-1] << 7) & 0x80
vec[x] = c
vec[0] >>= 1
return vec
def gcm_gf_mult(a, b):
mask = [ 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 ]
poly = [ 0x00, 0xe1 ]
Z = [0] * 16
V = [c for c in a]
for x in range(128):
if b[x >> 3] & mask[x & 7]:
Z = [V[y] ^ Z[y] for y in range(16)]
bit = V[15] & 1
V = gcm_rightshift(V)
V[0] ^= poly[bit]
return Z
def ghash(h, auth_data, data):
u = (16 - len(data)) % 16
v = (16 - len(auth_data)) % 16
x = auth_data + chr(0) * v + data + chr(0) * u
x += pack('>QQ', len(auth_data) * 8, len(data) * 8)
y = [0] * 16
vec_h = [ord(c) for c in h]
for i in range(0, len(x), 16):
block = [ord(c) for c in x[i:i+16]]
y = [y[j] ^ block[j] for j in range(16)]
y = gcm_gf_mult(y, vec_h)
return ''.join(chr(c) for c in y)
def inc32(block):
counter, = unpack('>L', block[12:])
counter += 1
return block[:12] + pack('>L', counter)
def gctr(k, icb, plaintext):
y = ''
if len(plaintext) == 0:
return y
aes = AES.new(k)
cb = icb
for i in range(0, len(plaintext), aes.block_size):
cb = inc32(cb)
encrypted = aes.encrypt(cb)
plaintext_block = plaintext[i:i+aes.block_size]
y += strxor.strxor(plaintext_block, encrypted[:len(plaintext_block)])
return y
def gcm_decrypt(k, iv, encrypted, auth_data, tag):
aes = AES.new(k)
h = aes.encrypt(chr(0) * aes.block_size)
if len(iv) == 12:
y0 = iv + "\x00\x00\x00\x01"
else:
y0 = ghash(h, '', iv)
decrypted = gctr(k, y0, encrypted)
s = ghash(h, auth_data, encrypted)
t = aes.encrypt(y0)
T = strxor.strxor(s, t)
if T != tag:
raise ValueError('Decrypted data is invalid')
else:
return decrypted
def gcm_encrypt(k, iv, plaintext, auth_data):
aes = AES.new(k)
h = aes.encrypt(chr(0) * aes.block_size)
if len(iv) == 12:
y0 = iv + "\x00\x00\x00\x01"
else:
y0 = ghash(h, '', iv)
encrypted = gctr(k, y0, plaintext)
s = ghash(h, auth_data, encrypted)
t = aes.encrypt(y0)
T = strxor.strxor(s, t)
return (encrypted, T)
def main():
#http://www.ieee802.org/1/files/public/docs2011/bn-randall-test-vectors-0511-v1.pdf
k = 'AD7A2BD03EAC835A6F620FDCB506B345'.decode("hex")
p = ''
a = 'D609B1F056637A0D46DF998D88E5222AB2C2846512153524C0895E8108000F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F30313233340001'.decode("hex")
iv = '12153524C0895E81B2C28465'.decode("hex")
c, t = gcm_encrypt(k, iv, '', a)
assert c == ""
assert t == "f09478a9b09007d06f46e9b6a1da25dd".decode("hex")
k = 'AD7A2BD03EAC835A6F620FDCB506B345'.decode("hex")
p = '08000F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F303132333435363738393A0002'.decode("hex")
a = 'D609B1F056637A0D46DF998D88E52E00B2C2846512153524C0895E81'.decode("hex")
iv = '12153524C0895E81B2C28465'.decode("hex")
c, t = gcm_encrypt(k, iv, p, a)
assert c == '701AFA1CC039C0D765128A665DAB69243899BF7318CCDC81C9931DA17FBE8EDD7D17CB8B4C26FC81E3284F2B7FBA713D'.decode("hex")
assert t == '4F8D55E7D3F06FD5A13C0C29B9D5B880'.decode("hex")
key = "91bfb6cbcff07b93a4c68bbfe99ac63b713f0627025c0fb1ffc5b0812dc284f8".decode("hex")
data = "020000000B00000028000000DE44D22E96B1966BAEF4CBEA8675871D40BA669401BD4EBB52AF9C025134187E70549012058456BF0EC0FA1F8FF9F822AC4312AB2141FA712E6D1482358EAC1421A1BFFA81EF38BD0BF2E52675D665EFE3C534E188F575774FAA92E74345575E370B9982661FAE8BD9243B7AD7D2105B275424C0CA1145B9D43AFF04F2747E40D62EC60563960D62A894BE66F267B14D75C0572BE60CC9B339D440FCB418D4F729BBF15C14E0D3A43E4A8B44523D8B3B0F3E7DF85AA67A707EE19CB893277D2392234D7DBC17DA4A0BD7F166189FC54C16C20D287E20FD2FB11BD2CE09ADBDABB95124CD4BFE219E34D3C80E69570A5A506555D7094916C5D75E0065F1796F556EDF0DAA1AA758E0C85AE3951BD363F26B1D43F6CBAEE12D97AD3B60CFA89C1C76BB29F2B54BE31B6CE166F4860C5E5DA92588EF53AA946DF159E60E6F05009D12FB1E37".decode("hex")
ciphertext = data[12+40:-16]
tag = data[-16:]
print repr(gcm_decrypt(key, '', ciphertext, '', tag))
if __name__ == '__main__':
main()

View File

@ -0,0 +1,156 @@
#!/usr/bin/env python
import sys, os
from PyQt4 import QtGui, QtCore
from backups.backup4 import MBDB
from keychain.keychain4 import Keychain4
from util.bplist import BPlistReader
from keystore.keybag import Keybag
from util import readPlist
class KeychainTreeWidget(QtGui.QTreeWidget):
def __init__(self, parent=None):
QtGui.QTreeWidget.__init__(self, parent)
self.setGeometry(10, 10, 780, 380)
self.header().hide()
self.setColumnCount(2)
class KeychainTreeWidgetItem(QtGui.QTreeWidgetItem):
def __init__(self, title):
QtGui.QTreeWidgetItem.__init__(self, [title])
fnt = self.font(0)
fnt.setBold(True)
self.setFont(0, fnt)
self.setColors()
def setText(self, column, title):
QtGui.QTreeWidgetItem.setText(self, column, title)
def setColors(self):
self.setForeground(0, QtGui.QBrush(QtGui.QColor(80, 80, 80)))
self.setBackground(0, QtGui.QBrush(QtGui.QColor(230, 230, 230)))
self.setBackground(1, QtGui.QBrush(QtGui.QColor(230, 230, 230)))
class LockedKeychainTreeWidgetItem(KeychainTreeWidgetItem):
def setColors(self):
self.setForeground(0, QtGui.QBrush(QtGui.QColor(255, 80, 80)))
self.setBackground(0, QtGui.QBrush(QtGui.QColor(255, 230, 230)))
self.setBackground(1, QtGui.QBrush(QtGui.QColor(255, 230, 230)))
class KeychainWindow(QtGui.QWidget):
def __init__(self, parent=None):
QtGui.QWidget.__init__(self, parent)
self.setGeometry(100, 100, 800, 400)
self.setWindowTitle('Keychain Explorer')
self.passwordTree = KeychainTreeWidget(parent=self)
def setGenericPasswords(self, pwds):
self.genericPasswords = pwds
self.passwordItems = KeychainTreeWidgetItem('Generic Passwords')
for pwd in self.genericPasswords:
if not pwd.has_key('acct'):
continue
if len(pwd['acct']) > 0:
item_title = '%s (%s)' % (pwd['svce'], pwd['acct'])
else:
item_title = pwd['svce']
if pwd['data'] is None:
item = LockedKeychainTreeWidgetItem(item_title)
else:
item = KeychainTreeWidgetItem(item_title)
item.addChild(QtGui.QTreeWidgetItem(['Service', pwd['svce']]))
item.addChild(QtGui.QTreeWidgetItem(['Account', pwd['acct']]))
if pwd['data'] is not None:
item.addChild(QtGui.QTreeWidgetItem(['Data', pwd['data']]))
else:
item.addChild(QtGui.QTreeWidgetItem(['Data', 'N/A']))
item.addChild(QtGui.QTreeWidgetItem(['Access Group', pwd['agrp']]))
self.passwordItems.addChild(item)
self.passwordTree.addTopLevelItem(self.passwordItems)
self.passwordTree.expandAll()
self.passwordTree.resizeColumnToContents(0)
def setInternetPasswords(self, pwds):
self.internetPasswords = pwds
self.internetPasswordItems = KeychainTreeWidgetItem('Internet Passwords')
for pwd in pwds:
item_title = '%s (%s)' % (pwd['srvr'], pwd['acct'])
item = KeychainTreeWidgetItem(item_title)
item.addChild(QtGui.QTreeWidgetItem(['Server', pwd['srvr']]))
item.addChild(QtGui.QTreeWidgetItem(['Account', pwd['acct']]))
if pwd['data'] is not None:
item.addChild(QtGui.QTreeWidgetItem(['Data', pwd['data']]))
else:
item.addChild(QtGui.QTreeWidgetItem(['Data', 'N/A']))
item.addChild(QtGui.QTreeWidgetItem(['Port', str(pwd['port'])]))
item.addChild(QtGui.QTreeWidgetItem(['Access Group', pwd['agrp']]))
self.internetPasswordItems.addChild(item)
self.passwordTree.addTopLevelItem(self.internetPasswordItems)
self.passwordTree.expandAll()
self.passwordTree.resizeColumnToContents(0)
def warn(msg):
print "WARNING: %s" % msg
def getBackupKeyBag(backupfolder, passphrase):
manifest = readPlist(backupfolder + "/Manifest.plist")
kb = Keybag(manifest["BackupKeyBag"].data)
if kb.unlockBackupKeybagWithPasscode(passphrase):
print "BackupKeyBag unlock OK"
return kb
else:
return None
def main():
app = QtGui.QApplication(sys.argv)
init_path = "{0:s}/Apple Computer/MobileSync/Backup".format(os.getenv('APPDATA'))
dirname = QtGui.QFileDialog.getExistingDirectory(None, "Select iTunes backup directory", init_path)
kb = getBackupKeyBag(dirname, 'pouet') #XXX: hardcoded password for demo
if not kb:
warn("Backup keybag unlock fail : wrong passcode?")
return
db = MBDB(dirname)
db.keybag = kb
filename, record = db.get_file_by_name("keychain-backup.plist")
keychain_data = db.read_file(filename, record)
f = file('keychain.tmp', 'wb')
f.write(keychain_data)
f.close()
kc = Keychain4('keychain.tmp', kb)
pwds = kc.get_passwords()
inet_pwds = kc.get_inet_passwords()
qb = KeychainWindow()
qb.setGenericPasswords(pwds)
qb.setInternetPasswords(inet_pwds)
qb.show()
sys.exit(app.exec_())
pass
if __name__ == '__main__':
main()

View File

@ -0,0 +1,88 @@
import plistlib
import os
from keystore.keybag import Keybag
from keychain.keychain4 import Keychain4
from keychain.managedconfiguration import bruteforce_old_pass
from util.ramdiskclient import RamdiskToolClient
from util import write_file
def bf_system():
curdir = os.path.dirname(os.path.abspath(__file__))
client = RamdiskToolClient()
di = client.getDeviceInfos()
devicedir = di["udid"]
if os.getcwd().find(devicedir) == -1:
try:
os.mkdir(devicedir)
except:
pass
os.chdir(devicedir)
key835 = di.get("key835").decode("hex")
systembag = client.getSystemKeyBag()
kbkeys = systembag["KeyBagKeys"].data
kb = Keybag.createWithDataSignBlob(kbkeys, key835)
keybags = di.setdefault("keybags", {})
kbuuid = kb.uuid.encode("hex")
print "Keybag UUID :", kbuuid
if True and keybags.has_key(kbuuid) and keybags[kbuuid].has_key("passcodeKey"):
print "We've already seen this keybag"
passcodeKey = keybags[kbuuid].get("passcodeKey").decode("hex")
print kb.unlockWithPasscodeKey(passcodeKey)
kb.printClassKeys()
else:
keybags[kbuuid] = {"KeyBagKeys": systembag["KeyBagKeys"]}
di["KeyBagKeys"] = systembag["KeyBagKeys"]
di.save()
print "Enter passcode or leave blank for bruteforce:"
z = raw_input()
res = client.getPasscodeKey(systembag["KeyBagKeys"].data, z)
if kb.unlockWithPasscodeKey(res.get("passcodeKey").decode("hex")):
print "Passcode \"%s\" OK" % z
di.update(res)
keybags[kbuuid].update(res)
di.save()
keychain_blob = client.downloadFile("/mnt2/Keychains/keychain-2.db")
write_file("keychain-2.db", keychain_blob)
print "Downloaded keychain database, use keychain_tool.py to decrypt secrets"
return
if z != "":
print "Wrong passcode, trying to bruteforce !"
if kb.passcodeComplexity == 0:
print "Trying all 4-digits passcodes..."
bf = client.bruteforceKeyBag(systembag["KeyBagKeys"].data)
if bf:
di.update(bf)
keybags[kbuuid].update(bf)
print bf
print kb.unlockWithPasscodeKey(bf.get("passcodeKey").decode("hex"))
kb.printClassKeys()
di["classKeys"] = kb.getClearClassKeysDict()
di.save()
else:
print "Complex passcode used, trying dictionary attack ..."
dictfile = os.path.join(curdir, 'wordlist.dict')
try:
wordlist = open(dictfile, 'r').readlines()
except (OSError, IOError), e:
exit(e)
for line in wordlist:
res = client.getPasscodeKey(systembag["KeyBagKeys"].data, line.rstrip('\n'))
if kb.unlockWithPasscodeKey(res.get("passcodeKey").decode("hex")):
print "Passcode \"%s\" OK" % line.rstrip('\n')
di.update(res)
keybags[kbuuid].update(res)
di.save()
keychain_blob = client.downloadFile("/mnt2/Keychains/keychain-2.db")
write_file("keychain-2.db", keychain_blob)
print "Downloaded keychain database, use keychain_tool.py to decrypt secrets"
return
print "Passcode not found!"
return
#keychain_blob = client.downloadFile("/private/var/Keychains/keychain-2.db")
keychain_blob = client.downloadFile("/mnt2/Keychains/keychain-2.db")
write_file("keychain-2.db", keychain_blob)
print "Downloaded keychain database, use keychain_tool.py to decrypt secrets"
bf_system()

View File

@ -0,0 +1,38 @@
import os
import plistlib
from keystore.keybag import Keybag
from util.ramdiskclient import RamdiskToolClient
"""
this wont work on iOS 5 unless the passcode was already bruteforced
"""
def escrow():
client = RamdiskToolClient()
di = client.getDeviceInfos()
key835 = di.get("key835").decode("hex")
plist = os.environ["ALLUSERSPROFILE"] + "/Apple/Lockdown/%s.plist" % di["udid"]
lockdown = plistlib.readPlist(plist)
kb = Keybag.createWithDataSignBlob(lockdown["EscrowBag"].data, key835)
keybags = di.setdefault("keybags", {})
kbuuid = kb.uuid.encode("hex")
if not keybags.has_key(kbuuid):
print lockdown["HostID"]
res = client.getEscrowRecord(lockdown["HostID"])
bagkey = res.get("BagKey")
print "Bag key" + bagkey.data.encode("hex")
res = client.getPasscodeKey(lockdown["EscrowBag"].data, bagkey)
print res
passcodeKey = res["passcodeKey"].decode("hex")
keybags[kbuuid] = {"KeyBagKeys": lockdown["EscrowBag"],
"passcode": bagkey,
"passcodeKey": passcodeKey.encode("hex")}
pl.update(keybags[kbuuid])
else:
passcodeKey = keybags[kbuuid].get("passcodeKey").decode("hex")
print kb.unlockWithPasscodeKey(passcodeKey)
kb.printClassKeys()
escrow()

View File

@ -0,0 +1,34 @@
from optparse import OptionParser
from hfs.emf import EMFVolume
from util.bdev import FileBlockDevice
import plistlib
def main():
parser = OptionParser(usage="emf_decrypter.py disk_image.bin")
parser.add_option("-w", "--nowrite", dest="write", action="store_false", default=True,
help="disable modifications of input file, for testing")
(options, args) = parser.parse_args()
if len(args) < 1:
parser.print_help()
return
device_infos = None
if len(args) >= 2: device_infos = plistlib.readPlist(args[1])
p = FileBlockDevice(args[0], 0, options.write)
v = EMFVolume(p, device_infos)
if not v.keybag.unlocked:
print "Keybag locked, protected files won't be decrypted, continue anyway ?"
if raw_input() == "n":
return
if options.write:
print "WARNING ! This tool will modify the hfs image and possibly wreck it if something goes wrong !"
print "Make sure to backup the image before proceeding"
print "You can use the --nowrite option to do a dry run instead"
else:
print "Test mode : the input file will not be modified"
print "Press a key to continue or CTRL-C to abort"
raw_input()
v.decryptAllFiles()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,25 @@
import os
import sys
from hfs.emf import EMFVolume
from hfs.journal import do_emf_carving
from util.bdev import FileBlockDevice
if __name__ == "__main__":
if len(sys.argv) < 2:
print "Usage: emf_undelete.py disk_image.bin"
sys.exit(0)
filename = sys.argv[1]
volume = EMFVolume(FileBlockDevice(filename), None)
dirname = os.path.dirname(filename)
if dirname == "":
dirname = "."
outdir = dirname + "/" + volume.volumeID().encode("hex") + "_" + os.path.basename(filename)
carveokdir = outdir + "/undelete/"
carvenokdir = outdir + "/junk/"
try:
os.makedirs(carveokdir)
os.makedirs(carvenokdir)
except:
pass
do_emf_carving(volume, carveokdir, carvenokdir)

View File

@ -0,0 +1,12 @@
from construct.core import Struct
from construct.macros import *
IMG2 = Struct("IMG2",
String("magic",4),
ULInt32("block_size"),
ULInt32("images_offset"),
ULInt32("images_block"),
ULInt32("images_length"),
Padding(0x1C),
ULInt32("crc32"),
)

View File

@ -0,0 +1,292 @@
from crypto.aes import AESdecryptCBC
from util import read_file, write_file
from util.ramdiskclient import RamdiskToolClient
import M2Crypto
import struct
import hashlib
import os
import sys
def decryptGID(data):
try:
client = RamdiskToolClient.get()
except:
return None
r = client.aesGID(data)
if r and r.has_key("data"):
return r.data.data
return None
def decryptPseudoGID(data):
pseudogid = "5F650295E1FFFC97CE77ABD49DD955B3".decode("hex")
return AESdecryptCBC(data, pseudogid, padding=False)
def dword(s,i):
return struct.unpack("<L", s[i:i+4])[0]
def extract_img3s(blob):
i = 0
res = []
while i < len(blob):
if blob[i:i+4] != "3gmI":
break
TYPE = blob[i+16:i+20][::-1]
l = struct.unpack("<L", blob[i+4:i+8])[0]
data = blob[i:i+l]
img3 = Img3(TYPE, data)
res.append(img3)
i += l
return res
class Img3:
INT_FIELDS = ["SEPO", "SDOM", "BORD", "CHIP", "PROD"]
rootCert = None
def __init__(self, filename, data=None):
self.filename = filename
self.shortname = os.path.basename(filename)
self.certs = None
if not data:
img3 = read_file(filename)
else:
img3 = data
self.img3 = img3
self.ecidoffset = 0
if img3[0:4] != '3gmI':
print "Magic 3gmI not found in " + filename
return
fullSize = dword(img3, 4)
sizeNoPack = dword(img3, 8)
sigCheckArea = dword(img3, 12)
self.sha1 = hashlib.sha1(img3)
self.fileHash = hashlib.sha1(img3[12:20+sigCheckArea])
i = 20
sections = {}
while i < fullSize:
tag = img3[i:i+4][::-1] #reverse fourcc tag
total_length = dword(img3, i+4)
data_length = dword(img3, i+8)
if tag == "DATA":
self.datalen = data_length
data = img3[i+12:i+total_length]
else:
data = img3[i+12:i+12+data_length]
if tag in Img3.INT_FIELDS:
data = struct.unpack("<L", data)[0]
elif tag == "VERS":
data = data[4:]
elif tag == "TYPE":
data = data[::-1]
elif tag == "ECID":
self.ecidoffset = i
#print "%s offset=%x len=%x" % (tag,i, data_length)
if tag != "KBAG" or dword(data,0) == 1:
sections[tag] = data
i += total_length
self.sections = sections
self.leaf_cert = None
self.sig = None
self.key = ""
self.iv = ""
self.extractCertificates()
#self.sigcheck()
def isEncrypted(self):
return self.sections.has_key("KBAG")
@staticmethod
def setRootCert(filename):
try:
Img3.rootCert = M2Crypto.X509.load_cert_der_string(open(filename,"rb").read())
except:
print "IMG3.setRootCert failed loading %s" % filename
def extractCertificates(self):
if not self.sections.has_key("CERT"):
return
certs = {}
i = 0
while i < len(self.sections["CERT"]):
data = self.sections["CERT"][i:]
cert = M2Crypto.X509.load_cert_der_string(data)
name = cert.get_subject().as_text()
#name = name[name.find("CN=")+3:]
#print name
certs[name] = cert
i += len(cert.as_der())
#XXX nested Img3 in leaf cert 1.2.840.113635.100.6.1.1
#CFTypeRef kSecOIDAPPLE_EXTENSION_APPLE_SIGNING = CFSTR("1.2.840.113635.100.6.1.1");
z = data.find("3gmI")
if z != -1:
zz = Img3("cert", data[z:])
self.sections.update(zz.sections)
#assume leaf cert is last
self.certs = certs
self.leaf_cert = cert
self.leaf_name = name
def writeCerts(self):
if not self.certs:
self.extractCertificates()
for key, cert in self.certs.items():
cert_data = cert.as_der()
cert_sha1 = hashlib.sha1(cert_data).hexdigest()
write_file("%s_%s.crt" % (key, cert_sha1), cert_data)
"""
Decrypt SHSH section with leaf certificate public key
output should be the SHA1 of img3[12:20+sigCheckArea]
"""
def sigcheck(self, k89A=None):
if not self.sections.has_key("SHSH"):
print "[x] FAIL sigcheck %s : no SHSH section" % self.shortname
return False
if not self.leaf_cert:
#print "Extracting certificates"
self.extractCertificates()
cert = self.leaf_cert
#print "Leaf cert subject: %s" % cert.get_subject()
certChainOk = False
while True:
issuer = cert.get_issuer().as_text()
#print "issuer: %s" % issuer
if not self.certs.has_key(issuer):
if not Img3.rootCert:
print "Cert chain stops at %s" % issuer
certChainOk = False
break
#print "Verifying cert.",
certChainOk = cert.verify(Img3.rootCert.get_pubkey())
break
issuer = self.certs[issuer]
if not cert.verify(issuer.get_pubkey()):
print "%s is not signed by %s (verify fail)" % (cert.get_subject().as_text(), issuer.get_subject().as_text())
return False
cert = issuer
shsh = self.sections["SHSH"]
print "Got SHSH"
try:
sig = self.leaf_cert.get_pubkey().get_rsa().public_decrypt(shsh, M2Crypto.RSA.pkcs1_padding)
except:
if k89A == None:
print "SHSH RSA decrypt FAIL, IMG3 must be personalized (SHSH encrypted with k89A)"
return False
try:
shsh = AESdecryptCBC(shsh, k89A)
sig = self.leaf_cert.get_pubkey().get_rsa().public_decrypt(shsh, M2Crypto.RSA.pkcs1_padding)
except:
raise
return False
#DigestInfo SHA1 http://www.ietf.org/rfc/rfc3447.txt
sha1_digestInfo = "3021300906052b0e03021a05000414".decode("hex")
if sig[:len(sha1_digestInfo)] == sha1_digestInfo:
pass#print "DigestInfo SHA1 OK"
self.sig = sig = sig[len(sha1_digestInfo):]
ok = sig == self.fileHash.digest()
if ok:
print "%s : signature check OK (%s)" % (self.shortname, self.leaf_name)
else:
print "Signature check for %s failed" % self.shortname
print "Decrypted SHA1 " + sig.encode("hex")
print "Sigcheck area SHA1 " + self.fileHash.hexdigest()
return ok
def ticketHash(self):
#sigchecklen = struct.unpack("<L", self.img3[12:16])[0]
tohash = struct.pack("<L", self.ecidoffset - 20) + self.img3[16:12 + self.ecidoffset - 20+8]
return hashlib.sha1(tohash).digest()
def setIvAndKey(self, iv, key):
self.iv = iv
self.key = key
def decryptKBAG(self):
if self.iv and self.key:
print "No need to decrypt KBAG"
return
if not self.sections.has_key("KBAG"):
print "FAIL: decrypt_kbag no KBAG section for %s" % self.filename
return
kbag = self.sections["KBAG"]
cryptState = dword(kbag,0)
if cryptState != 1:
print "FAIL: cryptState = %d" % cryptState
aesType = dword(kbag,4)
if aesType != 128 and aesType != 192 and aesType != 256:
print "FAIL: aesType = %d" % aesType
keySize = aesType / 8
#print "KBAG keySize = " + str(keySize)
#print "KBAG = %s" % kbag.encode("hex")
#kbag_dec = decryptPseudoGID(kbag[8:8+16+keySize])
kbag_dec = decryptGID(kbag[8:8+16+keySize])
if not kbag_dec:
return False
self.iv = kbag_dec[:16]
self.key = kbag_dec[16:]
return True
def isValidDecryptedData(self, data):
if len(data) > 16 and data.startswith("complzss"):
return "kernel"
if len(data) > 0x800 and data[0x400:0x400+2] == "H+":
return "ramdisk"
if len(data) > 0x300 and data[0x280:0x285] == "iBoot":
return "bootloader";
if data.find("serial-number") != -1:
return "devicetree"
if data.startswith("iBootIm"):
return "bootlogo"
def getRawData(self):
return self.sections["DATA"][:self.datalen]
def decryptData(self, key=None, iv=None):
if not self.sections.has_key("KBAG"):
return self.getRawData()
if not key or not iv:
if not self.decryptKBAG():
return
key = self.key
iv = self.iv
data = AESdecryptCBC(self.sections["DATA"], key, iv)
x = self.isValidDecryptedData(data)
if not x:
print >> sys.stderr, "%s : Decrypted data seems invalid" % self.shortname
print >> sys.stderr, data[:50].encode("hex")
return False
print "%s : decrypted OK (%s)" % (self.shortname, x)
return data[:self.datalen]
if __name__ == "__main__":
img3 = Img3(sys.argv[1])
img3.sigcheck()

View File

@ -0,0 +1,27 @@
from construct.core import Struct
from construct.macros import *
from construct import RepeatUntil, OneOf
from util import hexdump
SCFGItem = Struct("SCFGItem",
String("tag", 4),
String("data", 16, padchar="\x00")
)
SCFG = Struct("SCFG",
OneOf(String("magic", 4), ["gfCS"]),
ULInt32("length"),
ULInt32("unk1"),
ULInt32("unk2"),
ULInt32("unk3"),
ULInt32("unk4")
)
def parse_SCFG(data):
res = {}
scfg = SCFG.parse(data)
assert scfg.length > 0x18
for i in Array((scfg.length - 0x18) / 20, SCFGItem).parse(data[0x18:scfg.length]):
if i.tag != "\xFF\xFF\xFF\xFF":
res[str(i.tag)[::-1]] = str(i.data)
return res

View File

@ -0,0 +1,268 @@
from structs import *
"""
Probably buggy
HAX, only works on case SENSITIVE
"""
class BTree(object):
def __init__(self, file, keyStruct, dataStruct):
self.file = file
self.keyStruct = keyStruct
self.dataStruct = dataStruct
block0 = self.file.readBlock(0)
btnode = BTNodeDescriptor.parse(block0)
assert btnode.kind == kBTHeaderNode
self.header = BTHeaderRec.parse(block0[BTNodeDescriptor.sizeof():])
assert self.header.keyCompareType == 0 or self.header.keyCompareType == 0 or kHFSBinaryCompare
#TODO: do more testing when nodeSize != blockSize
self.nodeSize = self.header.nodeSize
self.nodesInBlock = file.blockSize / self.header.nodeSize
self.blocksForNode = self.header.nodeSize / file.blockSize
#print file.blockSize , self.header.nodeSize
self.lastRecordNumber = 0
type, (hdr, maprec) = self.readBtreeNode(0)
assert len(maprec) == self.nodeSize - 256
if self.header.totalNodes / 8 > len(maprec):
pass #TODO: handle map records
self.maprec = maprec
def isNodeInUse(self, nodeNumber):
thisByte = ord(self.maprec[nodeNumber / 8])
return (thisByte & (1 << (7 - (nodeNumber % 8)))) != 0
def readEmptySpace(self):
res = ""
z = 0
for i in xrange(self.header.totalNodes):
if not self.isNodeInUse(i):
z += 1
res += self.readNode(i)
assert z == self.header.freeNodes
return res
#convert construct structure to tuple
def getComparableKey(self, k):
raise Exception("implement in subclass")
def compareKeys(self, k1, k2):
k2 = self.getComparableKey(k2)
if k1 == k2:
return 0
return -1 if k1 < k2 else 1
def printLeaf(self, key, data):
print key, data
def readNode(self, nodeNumber):
node = ""
for i in xrange(self.blocksForNode):
node += self.file.readBlock(nodeNumber * self.blocksForNode + i)
return node
def readBtreeNode(self, nodeNumber):
self.lastnodeNumber = nodeNumber
node = self.readNode(nodeNumber)
self.lastbtnode = btnode = BTNodeDescriptor.parse(node)
if btnode.kind == kBTHeaderNode:
assert btnode.numRecords == 3
end = self.nodeSize - 8 #2*4
offsets = Array(btnode.numRecords+1, UBInt16("off")).parse(node[end:])
assert offsets[-4] == end
hdr = BTHeaderRec.parse(node[BTNodeDescriptor.sizeof():])
maprec = node[offsets[-3]:end]
return kBTHeaderNode, [hdr, maprec]
elif btnode.kind == kBTIndexNode:
recs = []
offsets = Array(btnode.numRecords, UBInt16("off")).parse(node[-2*btnode.numRecords:])
for i in xrange(btnode.numRecords):
off = offsets[btnode.numRecords-i-1]
k = self.keyStruct.parse(node[off:])
off += 2 + k.keyLength
k.childNode = UBInt32("nodeNumber").parse(node[off:off+4])
recs.append(k)
return kBTIndexNode, recs
elif btnode.kind == kBTLeafNode:
recs = []
offsets = Array(btnode.numRecords, UBInt16("off")).parse(node[-2*btnode.numRecords:])
for i in xrange(btnode.numRecords):
off = offsets[btnode.numRecords-i-1]
k = self.keyStruct.parse(node[off:])
off += 2 + k.keyLength
d = self.dataStruct.parse(node[off:])
recs.append((k,d))
return kBTLeafNode, recs
else:
raise Exception("Invalid node type " + str(btnode))
def search(self, searchKey, node=None):
if node == None:
node = self.header.rootNode
type, stuff = self.readBtreeNode(node)
if len(stuff) == 0:
return None, None
if type == kBTIndexNode:
for i in xrange(len(stuff)):
if self.compareKeys(searchKey, stuff[i]) < 0:
if i > 0:
i = i - 1
return self.search(searchKey, stuff[i].childNode)
return self.search(searchKey, stuff[len(stuff)-1].childNode)
elif type == kBTLeafNode:
self.lastRecordNumber = 0
for k,v in stuff:
res = self.compareKeys(searchKey, k)
if res == 0:
return k, v
if res < 0:
return None, None
self.lastRecordNumber += 1
return None, None
def traverse(self, node=None, count=0, callback=None):
if node == None:
node = self.header.rootNode
type, stuff = self.readBtreeNode(node)
if type == kBTIndexNode:
for i in xrange(len(stuff)):
count += self.traverse(stuff[i].childNode, callback=callback)
elif type == kBTLeafNode:
for k,v in stuff:
if callback:
callback(k,v)
else:
self.printLeaf(k, v)
count += 1
return count
def traverseLeafNodes(self, callback=None):
nodeNumber = self.header.firstLeafNode
count = 0
while nodeNumber != 0:
_, stuff = self.readBtreeNode(nodeNumber)
count += len(stuff)
for k,v in stuff:
if callback:
callback(k,v)
else:
self.printLeaf(k, v)
nodeNumber = self.lastbtnode.fLink
return count
#XXX
def searchMultiple(self, searchKey, filterKeyFunction=lambda x:False):
self.search(searchKey)
nodeNumber = self.lastnodeNumber
recordNumber = self.lastRecordNumber
kv = []
while nodeNumber != 0:
_, stuff = self.readBtreeNode(nodeNumber)
for k,v in stuff[recordNumber:]:
if filterKeyFunction(k):
kv.append((k,v))
else:
return kv
nodeNumber = self.lastbtnode.fLink
recordNumber = 0
return kv
def getLBAsHax(self):
nodes = [self.lastnodeNumber]
n = self.lastbtnode
for i in xrange(2):
nodes.append(self.lastbtnode.bLink)
self.readBtreeNode(self.lastbtnode.bLink)
self.lastbtnode = n
for i in xrange(2):
nodes.append(self.lastbtnode.fLink)
self.readBtreeNode(self.lastbtnode.fLink)
res = []
for n in nodes:
res.append(self.file.getLBAforBlock(n * self.blocksForNode))
return res
class CatalogTree(BTree):
def __init__(self, file, volume):
super(CatalogTree,self).__init__(file, HFSPlusCatalogKey, HFSPlusCatalogData)
self.volume = volume
def printLeaf(self, k, d):
if d.recordType == kHFSPlusFolderRecord or d.recordType == kHFSPlusFileRecord:
print getString(k)
def getComparableKey(self, k2):
#XXX http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html#StringComparisonAlgorithm
return (k2.parentID, getString(k2))
def searchByCNID(self, cnid):
threadk, threadd = self.search((cnid, ""))
return self.search((threadd.data.parentID, getString(threadd.data))) if threadd else (None, None)
def getFolderContents(self, cnid):
return self.searchMultiple((cnid, ""), lambda k:k.parentID == cnid)
def getRecordFromPath(self, path):
if not path.startswith("/"):
return None, None
if path == "/":
return self.searchByCNID(kHFSRootFolderID)
parentId=kHFSRootFolderID
i = 1
k, v = None, None
for p in path.split("/")[1:]:
if p == "":
break
k,v = self.search((parentId, p))
if (k,v) == (None, None):
return None, None
if v.recordType == kHFSPlusFolderRecord:
parentId = v.data.folderID
elif v.recordType == kHFSPlusFileRecord and is_symlink(v.data):
linkdata = self.volume.readFileByRecord(v)
print "symlink %s => %s" % (p, linkdata)
if not linkdata:
return None, None
t = path.split("/")
t[i] = linkdata
newpath = "/".join(t)
return self.getRecordFromPath(newpath)
else:
break
i += 1
return k,v
class ExtentsOverflowTree(BTree):
def __init__(self, file):
super(ExtentsOverflowTree,self).__init__(file, HFSPlusExtentKey, HFSPlusExtentRecord)
def getComparableKey(self, k2):
return (k2.fileID, k2.forkType, k2.startBlock)
def searchExtents(self, fileID, forkType, startBlock):
return self.search((fileID, forkType, startBlock))
class AttributesTree(BTree):
def __init__(self, file):
super(AttributesTree,self).__init__(file, HFSPlusAttrKey, HFSPlusAttrData)
def printLeaf(self, k, d):
print k.fileID, getString(k), d.data.encode("hex")
def getComparableKey(self, k2):
return (k2.fileID, getString(k2))
def searchXattr(self, fileID, name):
k,v = self.search((fileID, name))
return v.data if v else None
def getAllXattrs(self, fileID):
res = {}
for k,v in self.searchMultiple((fileID, ""), lambda k:k.fileID == fileID):
res[getString(k)] = v.data
return res

View File

@ -0,0 +1,220 @@
from construct import Struct, ULInt16, ULInt32, String
from construct.macros import ULInt64, Padding, If
from crypto.aes import AESencryptCBC, AESdecryptCBC
from hfs import HFSVolume, HFSFile
from keystore.keybag import Keybag
from structs import HFSPlusVolumeHeader, kHFSPlusFileRecord, getString, \
kHFSRootParentID
from util import search_plist
from util.bruteforce import loadKeybagFromVolume
import hashlib
import os
import plistlib
import struct
"""
iOS >= 4 raw images
http://opensource.apple.com/source/xnu/xnu-1699.22.73/bsd/hfs/hfs_cprotect.c
http://opensource.apple.com/source/xnu/xnu-1699.22.73/bsd/sys/cprotect.h
"""
cp_root_xattr = Struct("cp_root_xattr",
ULInt16("major_version"),
ULInt16("minor_version"),
ULInt64("flags"),
ULInt32("reserved1"),
ULInt32("reserved2"),
ULInt32("reserved3"),
ULInt32("reserved4")
)
cprotect_xattr = Struct("cprotect_xattr",
ULInt16("xattr_major_version"),
ULInt16("xattr_minor_version"),
ULInt32("flags"),
ULInt32("persistent_class"),
ULInt32("key_size"),
If(lambda ctx: ctx["xattr_major_version"] >= 4, Padding(20)),
String("persistent_key", length=lambda ctx: ctx["key_size"])
)
NSProtectionNone = 4
PROTECTION_CLASSES={
1:"NSFileProtectionComplete",
2:"NSFileProtectionCompleteUnlessOpen",
3:"NSFileProtectionCompleteUntilFirstUserAuthentication",
4:"NSFileProtectionNone",
5:"NSFileProtectionRecovery?"
}
#HAX: flags set in finderInfo[3] to tell if the image was already decrypted
FLAG_DECRYPTING = 0x454d4664 #EMFd big endian
FLAG_DECRYPTED = 0x454d4644 #EMFD big endian
class EMFFile(HFSFile):
def __init__(self, volume, hfsplusfork, fileID, filekey, deleted=False):
super(EMFFile,self).__init__(volume, hfsplusfork, fileID, deleted)
self.filekey = filekey
self.ivkey = None
self.decrypt_offset = 0
if volume.cp_major_version == 4:
self.ivkey = hashlib.sha1(filekey).digest()[:16]
def processBlock(self, block, lba):
iv = self.volume.ivForLBA(lba)
ciphertext = AESencryptCBC(block, self.volume.emfkey, iv)
if not self.ivkey:
clear = AESdecryptCBC(ciphertext, self.filekey, iv)
else:
clear = ""
for i in xrange(len(block)/0x1000):
iv = self.volume.ivForLBA(self.decrypt_offset, False)
iv = AESencryptCBC(iv, self.ivkey)
clear += AESdecryptCBC(ciphertext[i*0x1000:(i+1)*0x1000], self.filekey,iv)
self.decrypt_offset += 0x1000
return clear
def decryptFile(self):
self.decrypt_offset = 0
bs = self.volume.blockSize
for extent in self.extents:
for i in xrange(extent.blockCount):
lba = extent.startBlock+i
data = self.volume.readBlock(lba)
if len(data) == bs:
clear = self.processBlock(data, lba)
self.volume.writeBlock(lba, clear)
class EMFVolume(HFSVolume):
def __init__(self, bdev, device_infos, **kwargs):
super(EMFVolume,self).__init__(bdev, **kwargs)
volumeid = self.volumeID().encode("hex")
if not device_infos:
dirname = os.path.dirname(bdev.filename)
device_infos = search_plist(dirname, {"dataVolumeUUID":volumeid})
if not device_infos:
raise Exception("Missing keyfile")
try:
self.emfkey = None
if device_infos.has_key("EMF"):
self.emfkey = device_infos["EMF"].decode("hex")
self.lbaoffset = device_infos["dataVolumeOffset"]
self.keybag = Keybag.createWithPlist(device_infos)
except:
raise #Exception("Invalid keyfile")
rootxattr = self.getXattr(kHFSRootParentID, "com.apple.system.cprotect")
self.decrypted = (self.header.finderInfo[3] == FLAG_DECRYPTED)
self.cp_major_version = None
self.cp_root = None
if rootxattr == None:
print "(No root com.apple.system.cprotect xattr)"
else:
self.cp_root = cp_root_xattr.parse(rootxattr)
ver = self.cp_root.major_version
print "cprotect version : %d (iOS %d)" % (ver, 4 + int(ver != 2))
assert self.cp_root.major_version == 2 or self.cp_root.major_version == 4
self.cp_major_version = self.cp_root.major_version
self.keybag = loadKeybagFromVolume(self, device_infos)
def ivForLBA(self, lba, add=True):
iv = ""
if add:
lba = lba + self.lbaoffset
lba &= 0xffffffff
for _ in xrange(4):
if (lba & 1):
lba = 0x80000061 ^ (lba >> 1);
else:
lba = lba >> 1;
iv += struct.pack("<L", lba)
return iv
def getFileKeyForCprotect(self, cp):
if self.cp_major_version == None:
self.cp_major_version = struct.unpack("<H", cp[:2])[0]
cprotect = cprotect_xattr.parse(cp)
return self.keybag.unwrapKeyForClass(cprotect.persistent_class, cprotect.persistent_key)
def getFileKeyForFileId(self, fileid):
cprotect = self.getXattr(fileid, "com.apple.system.cprotect")
if cprotect == None:
return None
return self.getFileKeyForCprotect(cprotect)
def readFile(self, path, outFolder="./", returnString=False):
k,v = self.catalogTree.getRecordFromPath(path)
if not v:
print "File %s not found" % path
return
assert v.recordType == kHFSPlusFileRecord
cprotect = self.getXattr(v.data.fileID, "com.apple.system.cprotect")
if cprotect == None or not self.cp_root or self.decrypted:
#print "cprotect attr not found, reading normally"
return super(EMFVolume, self).readFile(path, returnString=returnString)
filekey = self.getFileKeyForCprotect(cprotect)
if not filekey:
print "Cannot unwrap file key for file %s protection_class=%d" % (path, cprotect_xattr.parse(cprotect).persistent_class)
return
f = EMFFile(self, v.data.dataFork, v.data.fileID, filekey)
if returnString:
return f.readAllBuffer()
f.readAll(outFolder + os.path.basename(path))
return True
def flagVolume(self, flag):
self.header.finderInfo[3] = flag
h = HFSPlusVolumeHeader.build(self.header)
return self.bdev.write(0x400, h)
def decryptAllFiles(self):
if self.header.finderInfo[3] == FLAG_DECRYPTING:
print "Volume is half-decrypted, aborting (finderInfo[3] == FLAG_DECRYPTING)"
return
elif self.header.finderInfo[3] == FLAG_DECRYPTED:
print "Volume already decrypted (finderInfo[3] == FLAG_DECRYPTED)"
return
self.failedToGetKey = []
self.notEncrypted = []
self.decryptedCount = 0
self.flagVolume(FLAG_DECRYPTING)
self.catalogTree.traverseLeafNodes(callback=self.decryptFile)
self.flagVolume(FLAG_DECRYPTED)
print "Decrypted %d files" % self.decryptedCount
print "Failed to unwrap keys for : ", self.failedToGetKey
print "Not encrypted files : %d" % len(self.notEncrypted)
def decryptFile(self, k,v):
if v.recordType == kHFSPlusFileRecord:
filename = getString(k).encode("utf-8")
cprotect = self.getXattr(v.data.fileID, "com.apple.system.cprotect")
if not cprotect:
self.notEncrypted.append(filename)
return
fk = self.getFileKeyForCprotect(cprotect)
if not fk:
self.failedToGetKey.append(filename)
return
print "Decrypting", filename
f = EMFFile(self, v.data.dataFork, v.data.fileID, fk)
f.decryptFile()
self.decryptedCount += 1
def list_protected_files(self):
self.protected_dict = {}
self.xattrTree.traverseLeafNodes(callback=self.inspectXattr)
for k in self.protected_dict.keys():
print k
for v in self.protected_dict[k]: print "\t",v
print ""
def inspectXattr(self, k, v):
if getString(k) == "com.apple.system.cprotect" and k.fileID != kHFSRootParentID:
c = cprotect_xattr.parse(v.data)
if c.persistent_class != NSProtectionNone:
#desc = "%d %s" % (k.fileID, self.getFullPath(k.fileID))
desc = "%s" % self.getFullPath(k.fileID)
self.protected_dict.setdefault(PROTECTION_CLASSES.get(c.persistent_class),[]).append(desc)
#print k.fileID, self.getFullPath(k.fileID), PROTECTION_CLASSES.get(c.persistent_class)

View File

@ -0,0 +1,315 @@
from btree import AttributesTree, CatalogTree, ExtentsOverflowTree
from structs import *
from util import write_file
from util.bdev import FileBlockDevice
import datetime
import hashlib
import os
import struct
import sys
import zlib
def hfs_date(t):
return datetime.datetime(1904,1,1) + datetime.timedelta(seconds=t)
class HFSFile(object):
def __init__(self, volume, hfsplusfork, fileID, deleted=False):
self.volume = volume
self.blockSize = volume.blockSize
self.fileID = fileID
self.totalBlocks = hfsplusfork.totalBlocks
self.logicalSize = hfsplusfork.logicalSize
self.extents = volume.getAllExtents(hfsplusfork, fileID)
self.deleted = deleted
def readAll(self, outputfile, truncate=True):
f = open(outputfile, "wb")
for i in xrange(self.totalBlocks):
f.write(self.readBlock(i))
if truncate:
f.truncate(self.logicalSize)
f.close()
def readAllBuffer(self, truncate=True):
r = ""
for i in xrange(self.totalBlocks):
r += self.readBlock(i)
if truncate:
r = r[:self.logicalSize]
return r
def processBlock(self, block, lba):
return block
def readBlock(self, n):
bs = self.volume.blockSize
if n*bs > self.logicalSize:
return "BLOCK OUT OF BOUNDS" + "\xFF" * (bs - len("BLOCK OUT OF BOUNDS"))
bc = 0
for extent in self.extents:
bc += extent.blockCount
if n < bc:
lba = extent.startBlock+(n-(bc-extent.blockCount))
if not self.deleted and self.fileID != kHFSAllocationFileID and not self.volume.isBlockInUse(lba):
print "FAIL, block %x not marked as used" % n
return self.processBlock(self.volume.readBlock(lba), lba)
return ""
def getLBAforBlock(self, n):
bc = 0
for extent in self.extents:
bc += extent.blockCount
if n < bc:
return extent.startBlock+(n-(bc-extent.blockCount))
def writeBlock(self, n, data):
bs = self.volume.blockSize
if n*bs > self.logicalSize:
raise Exception("writeBlock, out of bounds %d" % n)
bc = 0
for extent in self.extents:
bc += extent.blockCount
if n < bc:
lba = extent.startBlock+(n-(bc-extent.blockCount))
self.volume.writeBlock(lba, data)
return
class HFSCompressedResourceFork(HFSFile):
def __init__(self, volume, hfsplusfork, fileID):
super(HFSCompressedResourceFork,self).__init__(volume, hfsplusfork, fileID)
block0 = self.readBlock(0)
self.header = HFSPlusCmpfRsrcHead.parse(block0)
print self.header
self.blocks = HFSPlusCmpfRsrcBlockHead.parse(block0[self.header.headerSize:])
print "HFSCompressedResourceFork numBlocks:", self.blocks.numBlocks
#HAX, readblock not implemented
def readAllBuffer(self):
buff = super(HFSCompressedResourceFork, self).readAllBuffer()
r = ""
base = self.header.headerSize + 4
for b in self.blocks.HFSPlusCmpfRsrcBlock:
r += zlib.decompress(buff[base+b.offset:base+b.offset+b.size])
return r
class HFSVolume(object):
def __init__(self, bdev):
self.bdev = bdev
try:
data = self.bdev.readBlock(0)
self.header = HFSPlusVolumeHeader.parse(data[0x400:0x800])
assert self.header.signature == 0x4858 or self.header.signature == 0x482B
except:
raise
#raise Exception("Not an HFS+ image")
self.blockSize = self.header.blockSize
self.bdev.setBlockSize(self.blockSize)
#if os.path.getsize(filename) < self.header.totalBlocks * self.blockSize:
# print "WARNING: HFS image appears to be truncated"
self.allocationFile = HFSFile(self, self.header.allocationFile, kHFSAllocationFileID)
self.allocationBitmap = self.allocationFile.readAllBuffer()
self.extentsFile = HFSFile(self, self.header.extentsFile, kHFSExtentsFileID)
self.extentsTree = ExtentsOverflowTree(self.extentsFile)
self.catalogFile = HFSFile(self, self.header.catalogFile, kHFSCatalogFileID)
self.xattrFile = HFSFile(self, self.header.attributesFile, kHFSAttributesFileID)
self.catalogTree = CatalogTree(self.catalogFile, self)
self.xattrTree = AttributesTree(self.xattrFile)
self.hasJournal = self.header.attributes & (1 << kHFSVolumeJournaledBit)
def readBlock(self, b):
return self.bdev.readBlock(b)
def writeBlock(self, lba, data):
return self.bdev.writeBlock(lba, data)
def volumeID(self):
return struct.pack(">LL", self.header.finderInfo[6], self.header.finderInfo[7])
def isBlockInUse(self, block):
thisByte = ord(self.allocationBitmap[block / 8])
return (thisByte & (1 << (7 - (block % 8)))) != 0
def unallocatedBlocks(self):
for i in xrange(self.header.totalBlocks):
if not self.isBlockInUse(i):
yield i, self.read(i*self.blockSize, self.blockSize)
def getExtentsOverflowForFile(self, fileID, startBlock, forkType=kForkTypeData):
return self.extentsTree.searchExtents(fileID, forkType, startBlock)
def getXattr(self, fileID, name):
return self.xattrTree.searchXattr(fileID, name)
def getFileByPath(self, path):
return self.catalogTree.getRecordFromPath(path)
def getFileIDByPath(self, path):
key, record = self.catalogTree.getRecordFromPath(path)
if not record:
return
if record.recordType == kHFSPlusFolderRecord:
return record.data.folderID
return record.data.fileID
def listFolderContents(self, path):
k,v = self.catalogTree.getRecordFromPath(path)
if not k or v.recordType != kHFSPlusFolderRecord:
return
for k,v in self.catalogTree.getFolderContents(v.data.folderID):
if v.recordType == kHFSPlusFolderRecord:
#.HFS+ Private Directory Data\r
print v.data.folderID, getString(k).replace("\r","") + "/"
elif v.recordType == kHFSPlusFileRecord:
print v.data.fileID, getString(k)
def ls(self, path):
k,v = self.catalogTree.getRecordFromPath(path)
return self._ls(k, v)
def _ls(self, k, v):
res = {}
if not k or v.recordType != kHFSPlusFolderRecord:
return None
for k,v in self.catalogTree.getFolderContents(v.data.folderID):
if v.recordType == kHFSPlusFolderRecord:
#.HFS+ Private Directory Data\r
res[getString(k).replace("\r","") + "/"] = v.data
elif v.recordType == kHFSPlusFileRecord:
res[getString(k)] = v.data
return res
def listXattrs(self, path):
k,v = self.catalogTree.getRecordFromPath(path)
if k and v.recordType == kHFSPlusFileRecord:
return self.xattrTree.getAllXattrs(v.data.fileID)
elif k and v.recordType == kHFSPlusFolderThreadRecord:
return self.xattrTree.getAllXattrs(v.data.folderID)
def readFileByRecord(self, record):
assert record.recordType == kHFSPlusFileRecord
xattr = self.getXattr(record.data.fileID, "com.apple.decmpfs")
data = None
if xattr:
decmpfs = HFSPlusDecmpfs.parse(xattr)
if decmpfs.compression_type == 1:
return xattr[16:]
elif decmpfs.compression_type == 3:
if decmpfs.uncompressed_size == len(xattr) - 16:
return xattr[16:]
return zlib.decompress(xattr[16:])
elif decmpfs.compression_type == 4:
f = HFSCompressedResourceFork(self, record.data.resourceFork, record.data.fileID)
data = f.readAllBuffer()
return data
f = HFSFile(self, record.data.dataFork, record.data.fileID)
return f.readAllBuffer()
#TODO: returnString compress
def readFile(self, path, outFolder="./", returnString=False):
k,v = self.catalogTree.getRecordFromPath(path)
if not v:
print "File %s not found" % path
return
assert v.recordType == kHFSPlusFileRecord
xattr = self.getXattr(v.data.fileID, "com.apple.decmpfs")
if xattr:
decmpfs = HFSPlusDecmpfs.parse(xattr)
if decmpfs.compression_type == 1:
return xattr[16:]
elif decmpfs.compression_type == 3:
if decmpfs.uncompressed_size == len(xattr) - 16:
z = xattr[16:]
else:
z = zlib.decompress(xattr[16:])
open(outFolder + os.path.basename(path), "wb").write(z)
return
elif decmpfs.compression_type == 4:
f = HFSCompressedResourceFork(self, v.data.resourceFork, v.data.fileID)
z = f.readAllBuffer()
open(outFolder + os.path.basename(path), "wb").write(z)
return z
f = HFSFile(self, v.data.dataFork, v.data.fileID)
if returnString:
return f.readAllBuffer()
else:
f.readAll(outFolder + os.path.basename(path))
def readJournal(self):
#jb = self.read(self.header.journalInfoBlock * self.blockSize, self.blockSize)
#jib = JournalInfoBlock.parse(jb)
#return self.read(jib.offset,jib.size)
return self.readFile("/.journal", returnString=True)
def listAllFileIds(self):
self.fileids={}
self.catalogTree.traverseLeafNodes(callback=self.grabFileId)
return self.fileids
def grabFileId(self, k,v):
if v.recordType == kHFSPlusFileRecord:
self.fileids[v.data.fileID] = True
def getFileRecordForFileID(self, fileID):
k,v = self.catalogTree.searchByCNID(fileID)
return v
def getFullPath(self, fileID):
k,v = self.catalogTree.search((fileID, ""))
if not k:
print "File ID %d not found" % fileID
return ""
p = getString(v.data)
while k:
k,v = self.catalogTree.search((v.data.parentID, ""))
if k.parentID == kHFSRootFolderID:
break
p = getString(v.data) + "/" + p
return "/" + p
def getFileRecordForPath(self, path):
k,v = self.catalogTree.getRecordFromPath(path)
if not k:
return
return v.data
def getAllExtents(self, hfsplusfork, fileID):
b = 0
extents = []
for extent in hfsplusfork.HFSPlusExtentDescriptor:
extents.append(extent)
b += extent.blockCount
while b != hfsplusfork.totalBlocks:
k,v = self.getExtentsOverflowForFile(fileID, b)
if not v:
print "extents overflow missing, startblock=%d" % b
break
for extent in v:
extents.append(extent)
b += extent.blockCount
return extents
def dohashFiles(self, k,v):
if v.recordType == kHFSPlusFileRecord:
filename = getString(k)
f = HFSFile(self, v.data.dataFork, v.data.fileID)
print filename, hashlib.sha1(f.readAllBuffer()).hexdigest()
def hashFiles(self):
self.catalogTree.traverseLeafNodes(callback=self.dohashFiles)
if __name__ == "__main__":
v = HFSVolume("myramdisk.dmg",offset=0x40)
v.listFolderContents("/")
print v.readFile("/usr/local/share/restore/imeisv_svn.plist")
print v.listXattrs("/usr/local/share/restore/imeisv_svn.plist")

View File

@ -0,0 +1,152 @@
from crypto.aes import AESencryptCBC, AESdecryptCBC
from emf import cprotect_xattr, EMFFile
from structs import *
from util import write_file, sizeof_fmt
import hashlib
"""
Implementation of the following paper :
Using the HFS+ Journal For Deleted File Recovery. Aaron Burghardt, Adam Feldman. DFRWS 2008
http://www.dfrws.org/2008/proceedings/p76-burghardt.pdf
http://www.dfrws.org/2008/proceedings/p76-burghardt_pres.pdf
"""
def carveBtreeNode(node, kClass, dClass):
try:
btnode = BTNodeDescriptor.parse(node)
if btnode.kind == kBTLeafNode:
off = BTNodeDescriptor.sizeof()
recs = []
offsets = Array(btnode.numRecords, UBInt16("off")).parse(node[-2*btnode.numRecords:])
for i in xrange(btnode.numRecords):
off = offsets[btnode.numRecords-i-1]
k = kClass.parse(node[off:])
off += 2 + k.keyLength
d = dClass.parse(node[off:])
recs.append((k,d))
return recs
return []
except:
return []
"""
for standard HFS volumes
"""
def carveHFSVolumeJournal(volume):
journal = volume.readJournal()
hdr = journal_header.parse(journal)
sector_size = hdr.jhdr_size
nodeSize = volume.catalogTree.nodeSize
f={}
for i in xrange(0,len(journal), sector_size):
for k,v in carveBtreeNode(journal[i:i+nodeSize],HFSPlusCatalogKey, HFSPlusCatalogData):
if v.recordType == kHFSPlusFileRecord:
name = getString(k)
h = hashlib.sha1(HFSPlusCatalogKey.build(k)).digest()
if f.has_key(h):
continue
if volume.catalogTree.searchByCNID(v.data.fileID) == (None, None):
if volume.isBlockInUse(v.data.dataFork.HFSPlusExtentDescriptor[0].startBlock) == False:
print "deleted file", v.data.fileID, name
fileid = v.data.fileID
f[h]=(name, v)
return f.values()
magics=["SQLite", "bplist", "<?xml", "\xFF\xD8\xFF", "\xCE\xFA\xED\xFE", "\x89PNG", "\x00\x00\x00\x1CftypM4A",
"\x00\x00\x00\x14ftypqt"]
"""
HAX: should do something better like compute entropy or something
"""
def isDecryptedCorrectly(data):
for m in magics:
if data.startswith(m):
return True
return False
"""
carve the journal for deleted cprotect xattrs and file records
"""
def carveEMFVolumeJournal(volume):
journal = volume.readJournal()
print "Journal size : %s" % sizeof_fmt(len(journal))
hdr = journal_header.parse(journal)
sector_size = hdr.jhdr_size
nodeSize = volume.catalogTree.nodeSize
print "Collecting existing file ids"
fileIds = volume.listAllFileIds()
print "%d file IDs" % len(fileIds.keys())
files = {}
keys = {}
for i in xrange(0,len(journal),sector_size):
for k,v in carveBtreeNode(journal[i:i+nodeSize],HFSPlusCatalogKey, HFSPlusCatalogData):
if v.recordType == kHFSPlusFileRecord:
name = getString(k)
h = hashlib.sha1(HFSPlusCatalogKey.build(k)).digest()
if files.has_key(h):
continue
if not fileIds.has_key(v.data.fileID):
#we only keep files where the first block is not marked as in use
if volume.isBlockInUse(v.data.dataFork.HFSPlusExtentDescriptor[0].startBlock) == False:
print "Found deleted file record", v.data.fileID, name
files[h] = (name,v)
for k,v in carveBtreeNode(journal[i:i+nodeSize],HFSPlusAttrKey, HFSPlusAttrData):
if getString(k) == "com.apple.system.cprotect":
if not fileIds.has_key(k.fileID):
filekeys = keys.setdefault(k.fileID, [])
try:
cprotect = cprotect_xattr.parse(v.data)
except:
continue
#assert cprotect.xattr_major_version == 2
filekey = volume.keybag.unwrapKeyForClass(cprotect.persistent_class, cprotect.persistent_key)
if filekey and not filekey in filekeys:
print "Found key for file", k.fileID
filekeys.append(filekey)
return files.values(), keys
"""
"bruteforce" method, tries to decrypt all unallocated blocks with provided file keys
this is a hack, don't expect interesting results with this
"""
def carveEMFemptySpace(volume, file_keys, outdir):
for lba, block in volume.unallocatedBlocks():
iv = volume.ivForLBA(lba)
for filekey in file_keys:
ciphertext = AESencryptCBC(block, volume.emfkey, iv)
clear = AESdecryptCBC(ciphertext, filekey, iv)
if isDecryptedCorrectly(clear):
print "Decrypted stuff at lba %x" % lba
open(outdir+ "/%x.bin" % lba, "wb").write(clear)
def do_emf_carving(volume, carveokdir, carvenokdir):
deletedFiles, filekeys = carveEMFVolumeJournal(volume)
print "Journal carving done, trying to extract deleted files"
n = 0
for name, vv in deletedFiles:
for filekey in filekeys.get(vv.data.fileID, []):
ff = EMFFile(volume,vv.data.dataFork, vv.data.fileID, filekey, deleted=True)
data = ff.readAllBuffer()
if isDecryptedCorrectly(data):
write_file(carveokdir + "%d_%s" % (vv.data.fileID, name.replace("/","_")),data)
n += 1
else:
write_file(carvenokdir + "%d_%s" % (vv.data.fileID, name.replace("/","_")),data)
if not filekeys.has_key(vv.data.fileID):
print "Missing file key for", name
else:
del filekeys[vv.data.fileID]
print "Done, extracted %d files" % n
if False:
fks = set(reduce(lambda x,y: x+y, filekeys.values()))
print "%d file keys left, try carving empty space (slow) ? CTRL-C to exit" % len(fks)
raw_input()
carveEMFemptySpace(volume, fks)

View File

@ -0,0 +1,341 @@
from construct import *
from construct.macros import UBInt64
"""
http://developer.apple.com/library/mac/#technotes/tn/tn1150.html
"""
def getString(obj):
return obj.HFSUniStr255.unicode
S_IFLNK = 0120000
kSymLinkFileType = 0x736C6E6B
kSymLinkCreator = 0x72686170
kHardLinkFileType = 0x686C6E6B
kHFSPlusCreator = 0x6866732B
kHFSCaseFolding = 0xCF
kHFSBinaryCompare = 0xBC
def is_symlink(rec):
return rec.FileInfo.fileCreator == kSymLinkCreator and rec.FileInfo.fileType == kSymLinkFileType
kHFSRootParentID = 1
kHFSRootFolderID = 2
kHFSExtentsFileID = 3
kHFSCatalogFileID = 4
kHFSBadBlockFileID = 5
kHFSAllocationFileID = 6
kHFSStartupFileID = 7
kHFSAttributesFileID = 8
kHFSRepairCatalogFileID = 14
kHFSBogusExtentFileID = 15
kHFSFirstUserCatalogNodeID = 16
kBTLeafNode = -1
kBTIndexNode = 0
kBTHeaderNode = 1
kBTMapNode = 2
kHFSPlusFolderRecord = 0x0001
kHFSPlusFileRecord = 0x0002
kHFSPlusFolderThreadRecord = 0x0003
kHFSPlusFileThreadRecord = 0x0004
kHFSPlusAttrInlineData = 0x10
kHFSPlusAttrForkData = 0x20
kHFSPlusAttrExtents = 0x30
kForkTypeData = 0
kForkTypeRsrc = 0xFF
kHFSVolumeHardwareLockBit = 7
kHFSVolumeUnmountedBit = 8
kHFSVolumeSparedBlocksBit = 9
kHFSVolumeNoCacheRequiredBit = 10
kHFSBootVolumeInconsistentBit = 11
kHFSCatalogNodeIDsReusedBit = 12
kHFSVolumeJournaledBit = 13
kHFSVolumeSoftwareLockBit = 15
DECMPFS_MAGIC = 0x636d7066 #cmpf
HFSPlusExtentDescriptor = Struct("HFSPlusExtentDescriptor",
UBInt32("startBlock"),
UBInt32("blockCount")
)
HFSPlusExtentRecord = Array(8,HFSPlusExtentDescriptor)
HFSPlusForkData = Struct("HFSPlusForkData",
UBInt64("logicalSize"),
UBInt32("clumpSize"),
UBInt32("totalBlocks"),
Array(8, HFSPlusExtentDescriptor)
)
HFSPlusVolumeHeader= Struct("HFSPlusVolumeHeader",
UBInt16("signature"),
UBInt16("version"),
UBInt32("attributes"),
UBInt32("lastMountedVersion"),
UBInt32("journalInfoBlock"),
UBInt32("createDate"),
UBInt32("modifyDate"),
UBInt32("backupDate"),
UBInt32("checkedDate"),
UBInt32("fileCount"),
UBInt32("folderCount"),
UBInt32("blockSize"),
UBInt32("totalBlocks"),
UBInt32("freeBlocks"),
UBInt32("nextAllocation"),
UBInt32("rsrcClumpSize"),
UBInt32("dataClumpSize"),
UBInt32("nextCatalogID"),
UBInt32("writeCount"),
UBInt64("encodingsBitmap"),
Array(8, UBInt32("finderInfo")),
Struct("allocationFile", Embed(HFSPlusForkData)),
Struct("extentsFile", Embed(HFSPlusForkData)),
Struct("catalogFile", Embed(HFSPlusForkData)),
Struct("attributesFile", Embed(HFSPlusForkData)),
Struct("startupFile", Embed(HFSPlusForkData)),
)
BTNodeDescriptor = Struct("BTNodeDescriptor",
UBInt32("fLink"),
UBInt32("bLink"),
SBInt8("kind"),
UBInt8("height"),
UBInt16("numRecords"),
UBInt16("reserved")
)
BTHeaderRec = Struct("BTHeaderRec",
UBInt16("treeDepth"),
UBInt32("rootNode"),
UBInt32("leafRecords"),
UBInt32("firstLeafNode"),
UBInt32("lastLeafNode"),
UBInt16("nodeSize"),
UBInt16("maxKeyLength"),
UBInt32("totalNodes"),
UBInt32("freeNodes"),
UBInt16("reserved1"),
UBInt32("clumpSize"),
UBInt8("btreeType"),
UBInt8("keyCompareType"),
UBInt32("attributes"),
Array(16, UBInt32("reserved3"))
)
HFSUniStr255 = Struct("HFSUniStr255",
UBInt16("length"),
String("unicode", lambda ctx: ctx["length"] * 2, encoding="utf-16-be")
)
HFSPlusAttrKey = Struct("HFSPlusAttrKey",
UBInt16("keyLength"),
UBInt16("pad"),
UBInt32("fileID"),
UBInt32("startBlock"),
HFSUniStr255,
#UBInt32("nodeNumber")
)
HFSPlusAttrData = Struct("HFSPlusAttrData",
UBInt32("recordType"),
Array(2, UBInt32("reserved")),
UBInt32("size"),
MetaField("data", lambda ctx: ctx["size"])
)
HFSPlusCatalogKey = Struct("HFSPlusCatalogKey",
UBInt16("keyLength"),
UBInt32("parentID"),
HFSUniStr255
)
HFSPlusBSDInfo = Struct("HFSPlusBSDInfo",
UBInt32("ownerID"),
UBInt32("groupID"),
UBInt8("adminFlags"),
UBInt8("ownerFlags"),
UBInt16("fileMode"),
UBInt32("union_special")
)
Point = Struct("Point",
SBInt16("v"),
SBInt16("h")
)
Rect = Struct("Rect",
SBInt16("top"),
SBInt16("left"),
SBInt16("bottom"),
SBInt16("right")
)
FileInfo = Struct("FileInfo",
UBInt32("fileType"),
UBInt32("fileCreator"),
UBInt16("finderFlags"),
Point,
UBInt16("reservedField")
)
ExtendedFileInfo = Struct("ExtendedFileInfo",
Array(4, SBInt16("reserved1")),
UBInt16("extendedFinderFlags"),
SBInt16("reserved2"),
SBInt32("putAwayFolderID")
)
FolderInfo = Struct("FolderInfo",
Rect,
UBInt16("finderFlags"),
Point,
UBInt16("reservedField")
)
ExtendedFolderInfo = Struct("ExtendedFolderInfo",
Point,
SBInt32("reserved1"),
UBInt16("extendedFinderFlags"),
SBInt16("reserved2"),
SBInt32("putAwayFolderID")
)
HFSPlusCatalogFolder = Struct("HFSPlusCatalogFolder",
UBInt16("flags"),
UBInt32("valence"),
UBInt32("folderID"),
UBInt32("createDate"),
UBInt32("contentModDate"),
UBInt32("attributeModDate"),
UBInt32("accessDate"),
UBInt32("backupDate"),
HFSPlusBSDInfo,
FolderInfo,
ExtendedFolderInfo,
UBInt32("textEncoding"),
UBInt32("reserved")
)
HFSPlusCatalogFile = Struct("HFSPlusCatalogFile",
UBInt16("flags"),
UBInt32("reserved1"),
UBInt32("fileID"),
UBInt32("createDate"),
UBInt32("contentModDate"),
UBInt32("attributeModDate"),
UBInt32("accessDate"),
UBInt32("backupDate"),
HFSPlusBSDInfo,
FileInfo,
ExtendedFileInfo,
UBInt32("textEncoding"),
UBInt32("reserved2"),
Struct("dataFork", Embed(HFSPlusForkData)),
Struct("resourceFork", Embed(HFSPlusForkData))
)
HFSPlusCatalogThread = Struct("HFSPlusCatalogThread",
SBInt16("reserved"),
UBInt32("parentID"),
HFSUniStr255,
)
HFSPlusCatalogData = Struct("HFSPlusCatalogData",
UBInt16("recordType"),
Switch("data", lambda ctx: ctx["recordType"],
{
kHFSPlusFolderRecord : HFSPlusCatalogFolder,
kHFSPlusFileRecord : HFSPlusCatalogFile,
kHFSPlusFolderThreadRecord: HFSPlusCatalogThread,
kHFSPlusFileThreadRecord: HFSPlusCatalogThread
},
default=HFSPlusCatalogFolder #XXX: should not reach
)
)
HFSPlusExtentKey = Struct("HFSPlusExtentKey",
UBInt16("keyLength"),
UBInt8("forkType"),
UBInt8("pad"),
UBInt32("fileID"),
UBInt32("startBlock")
)
HFSPlusDecmpfs = Struct("HFSPlusDecmpfs ",
ULInt32("compression_magic"),
ULInt32("compression_type"),
ULInt64("uncompressed_size"),
)
HFSPlusCmpfRsrcHead = Struct("HFSPlusCmpfRsrcHead",
UBInt32("headerSize"),
UBInt32("totalSize"),
UBInt32("dataSize"),
UBInt32("flags")
)
HFSPlusCmpfRsrcBlock = Struct("HFSPlusCmpfRsrcBlock",
ULInt32("offset"),
ULInt32("size")
)
HFSPlusCmpfRsrcBlockHead = Struct("HFSPlusCmpfRsrcBlockHead",
UBInt32("dataSize"),
ULInt32("numBlocks"),
Array(lambda ctx:ctx["numBlocks"], HFSPlusCmpfRsrcBlock)
)
HFSPlusCmpfEnd = Struct("HFSPlusCmpfEnd",
Array(6, UBInt32("pad")),
UBInt16("unk1"),
UBInt16("unk2"),
UBInt16("unk3"),
UBInt32("magic"),
UBInt32("flags"),
UBInt64("size"),
UBInt32("unk4")
)
"""
Journal stuff
"""
JournalInfoBlock = Struct("JournalInfoBlock",
UBInt32("flags"),
Array(8, UBInt32("device_signature")),
UBInt64("offset"),
UBInt64("size"),
Array(32, UBInt32("reserved"))
)
journal_header = Struct("journal_header",
ULInt32("magic"),
ULInt32("endian"),
ULInt64("start"),
ULInt64("end"),
ULInt64("size"),
ULInt32("blhdr_size"),
ULInt32("checksum"),
ULInt32("jhdr_size")
)
block_info = Struct("block_info",
ULInt64("bnum"),
ULInt32("bsize"),
ULInt32("next")
)
block_list_header = Struct("block_list_header",
ULInt16("max_blocks"),
ULInt16("num_blocks"),
ULInt32("bytes_used"),
SLInt32("checksum"),
UBInt32("pad"),
Array(lambda ctx:ctx["num_blocks"], block_info)
)

View File

@ -0,0 +1,366 @@
from cmd import Cmd
from firmware.img3 import Img3
from hfs.emf import cprotect_xattr, PROTECTION_CLASSES
from hfs.hfs import hfs_date
from keystore.keybag import Keybag, PROTECTION_CLASSES
from nand.carver import NANDCarver
from nand.nand import NAND
from optparse import OptionParser
from util import hexdump, makedirs, write_file, parsePlist, sizeof_fmt,\
readPlist
from util.bruteforce import bruteforcePasscode
from util.ramdiskclient import RamdiskToolClient
import os
import plistlib
import struct
from pprint import pprint
from keychain import keychain_load
from nand.remote import IOFlashStorageKitClient
DEVICES_NAMES = {"m68ap": "iPhone 2G",
"n82ap": "iPhone 3G",
"n88ap": "iPhone 3GS",
"n90ap": "iPhone 4 GSM",
"n92ap": "iPhone 4 CDMA",
"n72ap": "iPod Touch 2G",
"n18ap": "iPod Touch 3G",
"n81ap": "iPod Touch 4G",
"k48ap": "iPad 1",
}
def print_device_infos(d):
print "Device model:", DEVICES_NAMES.get(d["hwModel"].lower(), d["hwModel"])
print "UDID:", d["udid"]
print "ECID:", d.get("ECID")
print "Serial number:", d["serialNumber"]
for k in ["key835", "key89B"]:
if d.has_key(k): print "%s: %s" % (k, d[k])
def grab_system_version(system, device_infos):
SystemVersion = system.readFile("/System/Library/CoreServices/SystemVersion.plist", returnString=True)
if SystemVersion:
SystemVersion = plistlib.readPlistFromString(SystemVersion)
print "iOS version: ", SystemVersion.get("ProductVersion")
def get_device_name(dataVolume):
preferences = dataVolume.readFile("/preferences/SystemConfiguration/preferences.plist", returnString=True)
if preferences:
preferences = parsePlist(preferences)
return preferences.get("System", {}).get("System", {}).get("ComputerName", "[device name found]")
return "[device name not found]"
def jailbreak_check(system):
#lazy jailbreak check
binsh = system.readFile("/bin/sh",returnString=True)
if binsh:
print "Device is probably jailbroken"
#fstab = system.readFile("/etc/fstab",returnString=True)
#XXX follow symlinks
#if fstab.count("rw") != 1:
# print "Device is probably jailbroken"
def check_kernel(system, device_infos):
kernel = system.readFile("/System/Library/Caches/com.apple.kernelcaches/kernelcache",returnString=True)
if not kernel: return
k3 = Img3("kernel", kernel)
if k3.sigcheck(device_infos.get("key89A","").decode("hex")):
print "Kernel signature check OK"
if kernel[0x40:0x50].startswith("complzss"):
print "Kernel is decrypted, probably jailbroken with redsn0w/pwnage tool"
class ExaminerShell(Cmd):
def __init__(self, image, completekey='tab', stdin=None, stdout=None):
Cmd.__init__(self, completekey=completekey, stdin=stdin, stdout=stdout)
self.curdir = "/"
self.rdisk = None
if image.filename == "remote":
self.rdisk = RamdiskToolClient.get()
self.device_infos = image.device_infos
self.complete_open = self._complete
self.complete_xattr = self._complete
self.complete_cprotect = self._complete
self.complete_ls = self._complete
self.complete_cd = self._complete
self.complete_plist = self._complete
self.complete_xxd = self._complete
self.image = image
self.system = image.getPartitionVolume(0)
self.data = image.getPartitionVolume(1)
self.volume = None
self.volname = ""
grab_system_version(self.system, self.device_infos)
print "Keybag state: %slocked" % (int(self.data.keybag.unlocked) * "un")
self.deviceName = get_device_name(self.data)
self.do_data("")
self.savepath = os.path.join(os.path.dirname(image.filename), "%s.plist" % self.device_infos.udid[:10])
#if image.iosVersion > 3 and not image.device_infos.has_key("passcode"):
# print "No passcode found in plist file, bruteforce required to access protected data"
self.carver = None
def set_partition(self, name, vol):
self.volume = vol
self.do_cd("/")
self.volname = name
self.prompt = "(%s-%s) %s " % (self.deviceName, self.volname, self.curdir)
def do_info(self, p):
pprint(self.device_infos)
def do_save(self, p):
print "Save device information plist to [%s]:" % self.savepath,
path2 = raw_input()
if path2: self.savepath = path2
if os.path.exists(self.savepath):
print "File already exists, overwrite ? [y/n]:",
if raw_input() != "y":
return
plistlib.writePlist(self.device_infos, self.savepath)
def do_system(self, p):
self.set_partition("system", self.system)
def do_data(self, p):
self.set_partition("data", self.data)
def do_pix(self, p):
self.do_data("")
self.do_cd("/mobile/Media/DCIM/100APPLE")
def do_keychain(self, p):
self.data.readFile("/Keychains/keychain-2.db")
keychain = keychain_load("keychain-2.db", self.data.keybag, self.image.device_infos["key835"].decode("hex"))
keychain.print_all(False)
def do_keychain_cert(self, p):
t = p.split()
id = int(t[0])
if len(t) == 2: filename = t[1]
else: filename = ""
keychain = keychain_load("keychain-2.db", self.data.keybag, self.image.device_infos["key835"].decode("hex"))
keychain.cert(id, filename)
def do_keychain_key(self, p):
t = p.split()
id = int(t[0])
if len(t) == 2: filename = t[1]
else: filename = ""
keychain = keychain_load("keychain-2.db", self.data.keybag, self.image.device_infos["key835"].decode("hex"))
keychain.key(id, filename)
def do_exit(self, p):
return True
def do_quit(self, p):
return self.do_exit(p)
def do_reboot(self, p):
if not self.rdisk:
self.rdisk = RamdiskToolClient.get()
self.rdisk.reboot()
return self.do_exit(p)
def do_pwd(self, p):
print self.curdir
def do_cd(self, p):
if len(p) == 0: p = "/"
if not p.startswith("/"):
new = self.curdir + p
else:
new = p
if not p.endswith("/"): new = new + "/"
d = self.volume.ls(new)
if d != None:
self.curdir = new
self.prompt = "(%s-%s) %s " % (self.deviceName, self.volname, new)
else:
print "%s not found/is not a directory" % new
def get_path(self, p):
path = p
if not path.startswith("/"):
path = self.curdir + path
return path
def _complete(self, text, line, begidx, endidx):
filename = text.split("/")[-1]
dirname = "/".join(text.split("/")[:-1])
if text.startswith("/"):
contents = self.volume.ls(dirname)
else:
contents = self.volume.ls(self.curdir + dirname)
if not contents:
return []
if dirname != "" and not dirname.endswith("/"):
dirname += "/"
res = [dirname + x for x in contents.keys() if x.startswith(filename)]
return res
#TODO if size==0 check if compressed
def do_ls(self, p):
dirDict = self.volume.ls((self.curdir + "/" + p).replace("//","/"))
if not dirDict:
return
for name in sorted(dirDict.keys()):
size = ""
protection_class = ""
record = dirDict[name]
if hasattr(record, "fileID"):
size = sizeof_fmt(record.dataFork.logicalSize)
cprotect = self.volume.getXattr(record.fileID, "com.apple.system.cprotect")
if cprotect:
protection_class = PROTECTION_CLASSES[struct.unpack("<L", cprotect[8:12])[0]]
print "%s\t%s\t%s\t%s" % (name[:30].ljust(30), size.ljust(10), hfs_date(record.createDate), protection_class)
def do_undelete(self, p):
if not self.data.keybag.unlocked:
print "Warning, keybag is not unlocked, some files will be inaccessible"
if not self.carver:
self.carver = NANDCarver(self.data, self.image)
if False:#len(p):
z = self.volume.catalogTree.getLBAsHax()
v = self.volume.getFileRecordForPath(self.curdir)
folderId = v.folderID
f = lambda k,v: k.parentID == folderId
else:
z = None
f = None
self.carver.carveDeletedFiles_fast(z, f)
#self.carver.carveDeleteFiles_slow(z, f)
def do_xattr(self, p):
xattr = self.volume.listXattrs(self.get_path(p))
if not xattr:
return
for name, value in xattr.items():
print name, value.encode("hex")
def do_protected_files(self, p):
self.data.list_protected_files()
def do_cprotect(self, p):
id = self.volume.getFileIDByPath(self.get_path(p))
if not id:
return
cprotect = self.volume.getXattr(id, "com.apple.system.cprotect")
if not cprotect:
return
cp = cprotect_xattr.parse(cprotect)
print cp
print "Protection class %d => %s" % (cp.persistent_class, PROTECTION_CLASSES.get(cp.persistent_class))
if not cp.persistent_key:
return
fk = self.volume.getFileKeyForCprotect(cprotect)
if fk:
print "Unwrapped file key : %s" % fk.encode("hex")
else:
print "Cannot decrypt file key"
def do_open(self, p):
path = self.get_path(p)
if self.volume.readFile(path):
os.startfile(os.path.basename(path))
def do_xxd(self, p):
t = p.split()
path = self.get_path(t[0])
data = self.volume.readFile(path, returnString=True)
if not data:
return
if len(t) > 1:
hexdump(data[:int(t[1])])
else:
hexdump(data)
def do_effaceable(self, p):
print "Effaceable Lockers"
for k,v in self.image.lockers.lockers.items():
print "%s: %s" % (k, v.encode("hex"))
def do_BAG1(self, p):
print "BAG1 locker from effaceable storage"
bag1 = self.image.lockers.get("BAG1")
hexdump(bag1)
print "IV:", bag1[4:20].encode("hex")
print "Key:", bag1[20:].encode("hex")
def do_keybag(self, p):
self.data.keybag.printClassKeys()
def do_plist(self, p):
d = None
data = self.volume.readFile(self.get_path(p), returnString=True)
if data:
d = parsePlist(data)
pprint(d)
else:
try:
d = readPlist(p)
if d: pprint(d)
except:
pass
if d and d.has_key("_MKBIV"):
print "=>System keybag file"
print "_MKBPAYLOAD: encrypted"
print "_MKBIV: %s" % d["_MKBIV"].data.encode("hex")
print "_MKBWIPEID: 0x%x (%s)" % (d["_MKBWIPEID"], ("%x"%(d["_MKBWIPEID"])).decode("hex"))
def do_bruteforce(self, p):
if bruteforcePasscode(self.image.device_infos, self.data):
print "Keybag state: %slocked" % (int(self.data.keybag.unlocked) * "un")
self.do_save("")
def do_ptable(self, p):
pt = self.image.getPartitionTable()
print "Block device partition table"
print "".join(map(lambda x:x.ljust(12), ["Index", "Name", "Start LBA", "End LBA", "Size"]))
for i in xrange(len(pt)):
p = pt[i]
print "".join(map(lambda x:str(x).ljust(12), [i, p.name, p.first_lba, p.last_lba, sizeof_fmt((p.last_lba - p.first_lba)*self.image.pageSize)]))
def do_nand_dump(self, p):
if len(p)==0:
print "Usage: nand_dump my_nand.bin"
return
self.image.dump(p)
def do_dd(self, p):
if len(p)==0:
print "Usage: dd output_file.dmg"
return
self.volume.bdev.dumpToFile(p.split()[0])
def do_img3(self, p):
self.image.extract_img3s()
def do_shsh(self, p):
self.image.extract_shsh()
def do_debug(self,p):
from IPython.Shell import IPShellEmbed
ipshell = IPShellEmbed()
ipshell(local_ns=locals())
def main():
parser = OptionParser(usage="%prog [options] nand_image.bin device_infos.plist")
(options, args) = parser.parse_args()
if len(args) >= 2:
plistname = args[1]
nandimagename = args[0]
device_infos = plistlib.readPlist(plistname)
print "Loading device information from %s" % plistname
else:
nandimagename ="remote"
client = RamdiskToolClient.get()
device_infos = client.device_infos
print_device_infos(device_infos)
image = NAND(nandimagename, device_infos)
ExaminerShell(image).cmdloop("")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,224 @@
#!/usr/bin/python
import plistlib
import zipfile
import struct
import sys
from optparse import OptionParser
from Crypto.Cipher import AES
from util.lzss import decompress_lzss
devices = {"n82ap": "iPhone1,2",
"n88ap": "iPhone2,1",
"n90ap": "iPhone3,1",
"n90bap": "iPhone3,2",
"n92ap": "iPhone3,3",
"n18ap": "iPod3,1",
"n81ap": "iPod4,1",
"k48ap": "iPad1,1",
"n72ap": "iPod2,1",
}
h=lambda x:x.replace(" ","").decode("hex")
#thx to 0x56
patchs_ios6 = {
"IOAESAccelerator enable UID" : (h("B0 F5 FA 6F 00 F0 92 80"), h("B0 F5 FA 6F 00 20 00 20")),
"_PE_i_can_has_debugger" : (h("80 B1 43 F2 BE 01 C0 F2"), h("01 20 70 47 BE 01 C0 F2")),
}
#https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c
patchs_ios5 = {
"CSED" : (h("df f8 88 33 1d ee 90 0f a2 6a 1b 68"), h("df f8 88 33 1d ee 90 0f a2 6a 01 23")),
"AMFI" : (h("D0 47 01 21 40 B1 13 35"), h("00 20 01 21 40 B1 13 35")),
"_PE_i_can_has_debugger" : (h("38 B1 05 49 09 68 00 29"), h("01 20 70 47 09 68 00 29")),
"task_for_pid_0" : (h("00 21 02 91 ba f1 00 0f 01 91 06 d1 02 a8"), h("00 21 02 91 ba f1 00 0f 01 91 06 e0 02 a8")),
"IOAESAccelerator enable UID" : (h("67 D0 40 F6"), h("00 20 40 F6")),
#not stritcly required, useful for testing
"getxattr system": ("com.apple.system.\x00", "com.apple.aaaaaa.\x00"),
"IOAES gid": (h("40 46 D4 F8 54 43 A0 47"), h("40 46 D4 F8 43 A0 00 20")),
#HAX to fit into the 40 char boot-args (redsn0w 0.9.10)
"nand-disable-driver": ("nand-disable-driver\x00", "nand-disable\x00\x00\x00\x00\x00\x00\x00\x00")
}
patchs_ios4 = {
"NAND_epoch" : ("\x90\x47\x83\x45", "\x90\x47\x00\x20"),
"CSED" : ("\x00\x00\x00\x00\x01\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00", "\x01\x00\x00\x00\x01\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00"),
"AMFI" : ("\x01\xD1\x01\x30\x04\xE0\x02\xDB", "\x00\x20\x01\x30\x04\xE0\x02\xDB"),
"_PE_i_can_has_debugger" : (h("48 B1 06 4A 13 68 13 B9"), h("01 20 70 47 13 68 13 B9")),
"IOAESAccelerator enable UID" : ("\x56\xD0\x40\xF6", "\x00\x00\x40\xF6"),
"getxattr system": ("com.apple.system.\x00", "com.apple.aaaaaa.\x00"),
}
patchs_armv6 = {
"NAND_epoch" : (h("00 00 5B E1 0E 00 00 0A"), h("00 00 5B E1 0E 00 00 EA")),
"CSED" : (h("00 00 00 00 01 00 00 00 80 00 00 00 00 00 00 00"), h("01 00 00 00 01 00 00 00 80 00 00 00 00 00 00 00")),
"AMFI" : (h("00 00 00 0A 00 40 A0 E3 04 00 A0 E1 90 80 BD E8"), h("00 00 00 0A 00 40 A0 E3 01 00 A0 E3 90 80 BD E8")),
"_PE_i_can_has_debugger" : (h("00 28 0B D0 07 4A 13 68 00 2B 02 D1 03 60 10 68"), h("01 20 70 47 07 4A 13 68 00 2B 02 D1 03 60 10 68")),
"IOAESAccelerator enable UID" : (h("5D D0 36 4B 9A 42"), h("00 20 36 4B 9A 42")),
"IOAES gid": (h("FA 23 9B 00 9A 42 05 D1"), h("00 20 00 20 9A 42 05 D1")),
"nand-disable-driver": ("nand-disable-driver\x00", "nand-disable\x00\x00\x00\x00\x00\x00\x00\x00"),
}
patchs_ios4_fixnand = {
"Please reboot => jump to prepare signature": (h("B0 47 DF F8 E8 04 F3 E1"), h("B0 47 DF F8 E8 04 1D E0")),
"prepare signature => jump to write signature": (h("10 43 18 60 DF F8 AC 04"), h("10 43 18 60 05 E1 00 20")),
"check write ok => infinite loop" : (h("A3 48 B0 47 01 24"), h("A3 48 B0 47 FE E7"))
}
#grab keys from redsn0w Keys.plist
class IPSWkeys(object):
def __init__(self, manifest):
self.keys = {}
buildi = manifest["BuildIdentities"][0]
dc = buildi["Info"]["DeviceClass"]
build = "%s_%s_%s" % (devices.get(dc,dc), manifest["ProductVersion"], manifest["ProductBuildVersion"])
try:
rs = plistlib.readPlist("Keys.plist")
except:
raise Exception("Get Keys.plist from redsn0w and place it in the current directory")
for k in rs["Keys"]:
if k["Build"] == build:
self.keys = k
break
def getKeyIV(self, filename):
if not self.keys.has_key(filename):
return None, None
k = self.keys[filename]
return k.get("Key",""), k.get("IV","")
def decryptImg3(blob, key, iv):
assert blob[:4] == "3gmI", "Img3 magic tag"
data = ""
for i in xrange(20, len(blob)):
tag = blob[i:i+4]
size, real_size = struct.unpack("<LL", blob[i+4:i+12])
if tag[::-1] == "DATA":
assert size >= real_size, "Img3 length check"
data = blob[i+12:i+size]
break
i += size
return AES.new(key, AES.MODE_CBC, iv).decrypt(data)[:real_size]
def main(ipswname, options):
ipsw = zipfile.ZipFile(ipswname)
manifest = plistlib.readPlistFromString(ipsw.read("BuildManifest.plist"))
kernelname = manifest["BuildIdentities"][0]["Manifest"]["KernelCache"]["Info"]["Path"]
devclass = manifest["BuildIdentities"][0]["Info"]["DeviceClass"]
kernel = ipsw.read(kernelname)
keys = IPSWkeys(manifest)
key,iv = keys.getKeyIV(kernelname)
if key == None:
print "No keys found for kernel"
return
print "Decrypting %s" % kernelname
kernel = decryptImg3(kernel, key.decode("hex"), iv.decode("hex"))
assert kernel.startswith("complzss"), "Decrypted kernelcache does not start with \"complzss\" => bad key/iv ?"
print "Unpacking ..."
kernel = decompress_lzss(kernel)
assert kernel.startswith("\xCE\xFA\xED\xFE"), "Decompressed kernelcache does not start with 0xFEEDFACE"
patchs = patchs_ios5
if devclass in ["n82ap", "n72ap"]:
print "Using ARMv6 kernel patches"
patchs = patchs_armv6
elif manifest["ProductVersion"].startswith("4."):
print "Using iOS 4 kernel patches"
patchs = patchs_ios4
elif manifest["ProductVersion"].startswith("6."):
print "Using iOS 6 kernel patches"
patchs = patchs_ios6
if options.fixnand:
if patchs != patchs_ios4:
print "FAIL : use --fixnand with iOS 4.x IPSW"
return
patchs.update(patchs_ios4_fixnand)
kernelname = "fix_nand_" + kernelname
print "WARNING : only use this kernel to fix NAND epoch brick"
for p in patchs:
print "Doing %s patch" % p
s, r = patchs[p]
c = kernel.count(s)
if c != 1:
print "=> FAIL, count=%d, do not boot that kernel it wont work" % c
else:
kernel = kernel.replace(s,r)
outkernel = "%s.patched" % kernelname
open(outkernel, "wb").write(kernel)
print "Patched kernel written to %s" % outkernel
ramdiskname = manifest["BuildIdentities"][0]["Manifest"]["RestoreRamDisk"]["Info"]["Path"]
key,iv = keys.getKeyIV("Ramdisk")
ramdisk = ipsw.read(ramdiskname)
print "Decrypting %s" % ramdiskname
ramdisk = decryptImg3(ramdisk, key.decode("hex"), iv.decode("hex"))
assert ramdisk[0x400:0x402] == "H+", "H+ magic not found in decrypted ramdisk => bad key/iv ?"
customramdisk = "myramdisk_%s.dmg" % devclass
f = open(customramdisk, "wb")
f.write(ramdisk)
f.close()
if manifest["ProductVersion"].startswith("6."):
print "Run ./build_ramdisk_ios6.sh %s" % customramdisk
print "Then redsn0w -i %s -r %s -k %s -a \"-v rd=md0 amfi=0xff cs_enforcement_disable=1\"" % (ipswname, customramdisk, outkernel)
return
build_cmd = "./build_ramdisk.sh %s %s %s %s %s" % (ipswname, ramdiskname, key, iv, customramdisk)
rs_cmd = "redsn0w -i %s -r %s -k %s" % (ipswname, customramdisk, outkernel)
rdisk_script="""#!/bin/sh
for VER in 4.2 4.3 5.0 5.1 6.0
do
if [ -f "/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS$VER.sdk/System/Library/Frameworks/IOKit.framework/IOKit" ];
then
SDKVER=$VER
echo "Found iOS SDK $SDKVER"
break
fi
done
if [ "$SDKVER" == "" ]; then
echo "iOS SDK not found"
exit
fi
SDKVER=$SDKVER make -C ramdisk_tools
%s
if [ "$?" == "0" ]
then
echo "You can boot the ramdisk using the following command (fix paths)"
echo "%s"
echo "Add -a \\"-v rd=md0 nand-disable=1\\" for nand dump/read only access"
fi
""" % (build_cmd, rs_cmd)
scriptname="make_ramdisk_%s.sh" % devclass
f=open(scriptname, "wb")
f.write(rdisk_script)
f.close()
print "Created script %s, you can use it to (re)build the ramdisk"% scriptname
if __name__ == "__main__":
parser = OptionParser(usage="%prog [options] IPSW")
parser.add_option("-f", "--fixnand",
action="store_true", dest="fixnand", default=False,
help="Apply NAND epoch fix kernel patches")
(options, args) = parser.parse_args()
if len(args) < 1:
parser.print_help()
else:
main(args[0], options)

View File

@ -0,0 +1,12 @@
import sqlite3
from keychain3 import Keychain3
from keychain4 import Keychain4
def keychain_load(filename, keybag, key835):
version = sqlite3.connect(filename).execute("SELECT version FROM tversion").fetchone()[0]
#print "Keychain version : %d" % version
if version == 3:
return Keychain3(filename, key835)
elif version >= 4:
return Keychain4(filename, keybag)
raise Exception("Unknown keychain version %d" % version)

View File

@ -0,0 +1,237 @@
from store import PlistKeychain, SQLiteKeychain
from util import write_file
from util.asciitables import print_table
from util.bplist import BPlistReader
from util.cert import RSA_KEY_DER_to_PEM, CERT_DER_to_PEM
import M2Crypto
import hashlib
import plistlib
import sqlite3
import string
import struct
KSECATTRACCESSIBLE = {
6: "kSecAttrAccessibleWhenUnlocked",
7: "kSecAttrAccessibleAfterFirstUnlock",
8: "kSecAttrAccessibleAlways",
9: "kSecAttrAccessibleWhenUnlockedThisDeviceOnly",
10: "kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly",
11: "kSecAttrAccessibleAlwaysThisDeviceOnly"
}
printset = set(string.printable)
def render_password(p):
data = p["data"]
if data != None and data.startswith("bplist") and data.find("\x00") != -1:
pl = BPlistReader.plistWithString(p["data"])
filename = "%s_%s_%d.plist" % (p["svce"],p["acct"],p["rowid"])
plistlib.writePlist(pl, filename)
#write_file("bin_"+filename, p["data"])
data = filename
if p.has_key("srvr"):
return "%s:%d;%s;%s" % (p["srvr"],p["port"],p["acct"],data)
else:
return "%s;%s;%s" % (p["svce"],p["acct"],data)
class Keychain(object):
def __init__(self, filename):
magic = open(filename, "rb").read(16)
if magic.startswith("SQLite"):
self.store = SQLiteKeychain(filename)
elif magic.startswith("bplist"):
self.store = PlistKeychain(filename)
else:
raise Exception("Unknown keychain format for %s" % filename)
self.bsanitize = True
self.items = {"genp": None, "inet": None, "cert": None, "keys": None}
def decrypt_data(self, data):
return data #override this method
def decrypt_item(self, res):
res["data"] = self.decrypt_data(res["data"])
if not res["data"]:
return {}
return res
def get_items(self, table):
if self.items[table]:
return self.items[table]
self.items[table] = filter(lambda x:x!={}, map(self.decrypt_item, self.store.get_items(table)))
return self.items[table]
def get_passwords(self):
return self.get_items("genp")
def get_inet_passwords(self):
return self.get_items("inet")
def get_keys(self):
return self.get_items("keys")
def get_cert(self):
return self.get_items("cert")
def get_certs(self):
certs = {}
pkeys = {}
keys = self.get_keys()
for row in self.get_cert():
cert = M2Crypto.X509.load_cert_der_string(row["data"])
subject = cert.get_subject().as_text()
common_name = cert.get_subject().get_entries_by_nid(M2Crypto.X509.X509_Name.nid['CN'])
if len(common_name):
subject = str(common_name[0].get_data())
else:
subject = "cn_unknown_%d" % row["rowid"]
certs[subject+ "_%s" % row["agrp"]] = cert
#print subject
#print "Access :\t" + KSECATTRACCESSIBLE.get(row["clas"])
for k in keys:
if k["agrp"] == row["agrp"] and k["klbl"] == row["pkhh"]:
pkey_der = k["data"]
pkey_der = RSA_KEY_DER_to_PEM(pkey_der)
pkeys[subject + "_%s" % row["agrp"]] = pkey_der
break
return certs, pkeys
def save_passwords(self):
passwords = "\n".join(map(render_password, self.get_passwords()))
inetpasswords = "\n".join(map(render_password, self.get_inet_passwords()))
print "Writing passwords to keychain.csv"
write_file("keychain.csv", "Passwords;;\n"+passwords+"\nInternet passwords;;\n"+ inetpasswords)
def save_certs_keys(self):
certs, pkeys = self.get_certs()
for c in certs:
filename = c + ".crt"
print "Saving certificate %s" % filename
certs[c].save_pem(filename)
for k in pkeys:
filename = k + ".key"
print "Saving key %s" % filename
write_file(filename, pkeys[k])
def sanitize(self, pw):
if pw.startswith("bplist"):
return "<binary plist data>"
elif not set(pw).issubset(printset):
pw = ">"+ pw.encode("hex")
#pw = "<binary data> : " + pw.encode("hex")
if self.bsanitize:
return pw[:2] + ("*" * (len(pw) - 2))
return pw
def print_all(self, sanitize=True):
self.bsanitize = sanitize
headers = ["Service", "Account", "Data", "Access group", "Protection class"]
rows = []
for p in self.get_passwords():
row = [p.get("svce","?"),
str(p.get("acct","?"))[:40],
self.sanitize(p.get("data","?"))[:20],
p.get("agrp","?"),
KSECATTRACCESSIBLE.get(p["clas"])[18:]]
rows.append(row)
print_table("Passwords", headers, rows)
headers = ["Server", "Account", "Data", "Access group", "Protection class"]
rows = []
for p in self.get_inet_passwords():
addr = "?"
if p.has_key("srvr"):
addr = p["srvr"] + ":" + str(p["port"])
row = [addr,
str(p.get("acct","?")),
self.sanitize(p.get("data","?"))[:20],
p.get("agrp","?"),
KSECATTRACCESSIBLE.get(p["clas"])[18:]]
rows.append(row)
print_table("Internet Passwords", headers, rows)
headers = ["Id", "Common Name", "Access group", "Protection class"]
rows = []
c = {}
for row in self.get_cert():
subject = "?"
if row.has_key("data"):
cert = M2Crypto.X509.load_cert_der_string(row["data"])
subject = cert.get_subject().as_text()
common_name = cert.get_subject().get_entries_by_nid(M2Crypto.X509.X509_Name.nid['CN'])
if len(common_name):
subject = str(common_name[0].get_data())
else:
subject = "cn_unknown_%d" % row["rowid"]
c[hashlib.sha1(str(row["pkhh"])).hexdigest() + row["agrp"]] = subject
row = [str(row["rowid"]),
subject[:81],
row.get("agrp","?")[:31],
KSECATTRACCESSIBLE.get(row["clas"])[18:]
]
rows.append(row)
print_table("Certificates", headers, rows)
headers = ["Id", "Label", "Common Name", "Access group", "Protection class"]
rows = []
for row in self.get_keys():
subject = ""
if row.has_key("klbl"):
subject = c.get(hashlib.sha1(str(row["klbl"])).hexdigest() + row["agrp"], "")
row = [str(row["rowid"]), row.get("labl", "?")[:30], subject[:39], row.get("agrp","?")[:31],
KSECATTRACCESSIBLE.get(row["clas"])[18:]]
rows.append(row)
print_table("Keys", headers, rows)
def get_push_token(self):
for p in self.get_passwords():
if p["svce"] == "push.apple.com":
return p["data"]
def get_managed_configuration(self):
for p in self.get_passwords():
if p["acct"] == "Private" and p["svce"] == "com.apple.managedconfiguration" and p["agrp"] == "apple":
return BPlistReader.plistWithString(p["data"])
def _diff(self, older, res, func, key):
res.setdefault(key, [])
current = func(self)
for p in func(older):
if not p in current and not p in res[key]:
res[key].append(p)
def diff(self, older, res):
self._diff(older, res, Keychain.get_passwords, "genp")
self._diff(older, res, Keychain.get_inet_passwords, "inet")
self._diff(older, res, Keychain.get_cert, "cert")
self._diff(older, res, Keychain.get_keys, "keys")
def cert(self, rowid, filename=""):
for row in self.get_cert():
if row["rowid"] == rowid:
blob = CERT_DER_to_PEM(row["data"])
if filename:
write_file(filename, blob)
cert = M2Crypto.X509.load_cert_der_string(row["data"])
print cert.as_text()
return
def key(self, rowid, filename=""):
for row in self.get_keys():
if row["rowid"] == rowid:
blob = RSA_KEY_DER_to_PEM(row["data"])
if filename:
write_file(filename, blob)
#k = M2Crypto.RSA.load_key_string(blob)
print blob
return

View File

@ -0,0 +1,44 @@
from keychain import Keychain
from crypto.aes import AESdecryptCBC, AESencryptCBC
import hashlib
class Keychain3(Keychain):
def __init__(self, filename, key835=None):
Keychain.__init__(self, filename)
self.key835 = key835
def decrypt_data(self, data):
if data == None:
return ""
data = str(data)
if not self.key835:
print "Key 835 not availaible"
return ""
data = AESdecryptCBC(data[16:], self.key835, data[:16], padding=True)
#data_column = iv + AES128_K835(iv, data + sha1(data))
if hashlib.sha1(data[:-20]).digest() != data[-20:]:
print "data field hash mismatch : bad key ?"
return "ERROR decrypting data : bad key ?"
return data[:-20]
def change_key835(self, newkey):
tables = {"genp": "SELECT rowid, data FROM genp",
"inet": "SELECT rowid, data FROM inet",
"cert": "SELECT rowid, data FROM cert",
"keys": "SELECT rowid, data FROM keys"}
for t in tables.keys():
for row in self.conn.execute(tables[t]):
rowid = row["rowid"]
data = str(row["data"])
iv = data[:16]
data = AESdecryptCBC(data[16:], self.key835, iv)
data = AESencryptCBC(data, newkey, iv)
data = iv + data
data = buffer(data)
self.conn.execute("UPDATE %s SET data=? WHERE rowid=?" % t, (data, rowid))
self.conn.commit()

View File

@ -0,0 +1,92 @@
from crypto.aes import AESdecryptCBC
import struct
"""
iOS 4 keychain-2.db data column format
version 0x00000000
key class 0x00000008
kSecAttrAccessibleWhenUnlocked 6
kSecAttrAccessibleAfterFirstUnlock 7
kSecAttrAccessibleAlways 8
kSecAttrAccessibleWhenUnlockedThisDeviceOnly 9
kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly 10
kSecAttrAccessibleAlwaysThisDeviceOnly 11
wrapped AES256 key 0x28 bytes (passed to kAppleKeyStoreKeyUnwrap)
encrypted data (AES 256 CBC zero IV)
"""
from keychain import Keychain
from crypto.gcm import gcm_decrypt
from util.bplist import BPlistReader
KSECATTRACCESSIBLE = {
6: "kSecAttrAccessibleWhenUnlocked",
7: "kSecAttrAccessibleAfterFirstUnlock",
8: "kSecAttrAccessibleAlways",
9: "kSecAttrAccessibleWhenUnlockedThisDeviceOnly",
10: "kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly",
11: "kSecAttrAccessibleAlwaysThisDeviceOnly"
}
class Keychain4(Keychain):
def __init__(self, filename, keybag):
if not keybag.unlocked:
print "Keychain object created with locked keybag, some items won't be decrypted"
Keychain.__init__(self, filename)
self.keybag = keybag
def decrypt_item(self, row):
version, clas = struct.unpack("<LL", row["data"][0:8])
if self.keybag.isBackupKeybag():
if clas >= 9 and not self.keybag.deviceKey:
return {}
if version >= 2:
dict = self.decrypt_blob(row["data"])
if not dict:
return {"clas": clas, "rowid": row["rowid"]}
if dict.has_key("v_Data"):
dict["data"] = dict["v_Data"].data
else:
dict["data"] = ""
dict["rowid"] = row["rowid"]
dict["clas"] = clas
return dict
row["clas"] = clas
return Keychain.decrypt_item(self, row)
def decrypt_data(self, data):
data = self.decrypt_blob(data)
if type(data) == dict:
return data["v_Data"].data
return data
def decrypt_blob(self, blob):
if blob == None:
return ""
if len(blob) < 48:
print "keychain blob length must be >= 48"
return
version, clas = struct.unpack("<LL",blob[0:8])
self.clas=clas
if version == 0:
wrappedkey = blob[8:8+40]
encrypted_data = blob[48:]
elif version == 2:
l = struct.unpack("<L",blob[8:12])[0]
wrappedkey = blob[12:12+l]
encrypted_data = blob[12+l:-16]
else:
raise Exception("unknown keychain verson ", version)
return
unwrappedkey = self.keybag.unwrapKeyForClass(clas, wrappedkey, False)
if not unwrappedkey:
return
if version == 0:
return AESdecryptCBC(encrypted_data, unwrappedkey, padding=True)
elif version == 2:
binaryplist = gcm_decrypt(unwrappedkey, "", encrypted_data, "", blob[-16:])
return BPlistReader(binaryplist).parse()

View File

@ -0,0 +1,27 @@
"""
0
1:MCSHA256DigestWithSalt
2:SecKeyFromPassphraseDataHMACSHA1
"""
from crypto.PBKDF2 import PBKDF2
import plistlib
import hashlib
SALT1 = "F92F024CA2CB9754".decode("hex")
hashMethods={
1: (lambda p,salt:hashlib.sha256(SALT1 + p)),
2: (lambda p,salt:PBKDF2(p, salt, iterations=1000).read(20))
}
def bruteforce_old_pass(h):
salt = h["salt"].data
hash = h["hash"].data
f = hashMethods.get(h["hashMethod"])
if f:
print "Bruteforcing hash %s (4 digits)" % hash.encode("hex")
for i in xrange(10000):
p = "%04d" % (i % 10000)
if f(p,salt) == hash:
return p

View File

@ -0,0 +1,56 @@
import plistlib
import sqlite3
import struct
from util import readPlist
class KeychainStore(object):
def __init__(self):
pass
def convertDict(self, d):
return d
def returnResults(self, r):
for a in r:
yield self.convertDict(a)
def get_items(self, table):
return []
class SQLiteKeychain(KeychainStore):
def __init__(self, filename):
self.conn = sqlite3.connect(filename)
self.conn.row_factory = sqlite3.Row
def convertDict(self, row):
d = dict(row)
for k,v in d.items():
if type(v) == buffer:
d[k] = str(v)
return d
def get_items(self, table):
sql = {"genp": "SELECT rowid, data, svce, acct, agrp FROM genp",
"inet": "SELECT rowid, data, acct, srvr, port, agrp FROM inet",
"cert": "SELECT rowid, data, pkhh, agrp FROM cert",
"keys": "SELECT rowid, data, klbl, agrp FROM keys"}
return self.returnResults(self.conn.execute(sql[table]))
class PlistKeychain(KeychainStore):
def __init__(self, filename):
self.plist = readPlist(filename)
def convertDict(self, d):
for k, v in d.items():
if isinstance(v, plistlib.Data):
if k == "v_Data":
d["data"] = v.data
elif k == "v_PersistentRef":
#format tablename (4 chars) + rowid (64 bits)
d["rowid"] = struct.unpack("<Q", v.data[-8:])[0]
else:
d[k] = v.data
return d
def get_items(self, table):
return self.returnResults(self.plist.get(table, []))

View File

@ -0,0 +1,72 @@
from optparse import OptionParser
from keystore.keybag import Keybag
from keychain import keychain_load
from keychain.managedconfiguration import bruteforce_old_pass
from util import readPlist
from keychain.keychain4 import Keychain4
import plistlib
def main():
parser = OptionParser(usage="%prog keychain.db/keychain-backup.plist keyfile.plist/Manifest.plist")
parser.add_option("-d", "--display", dest="display", action="store_true", default=False,
help="Show keychain items on stdout")
parser.add_option("-s", "--sanitize", dest="sanitize", action="store_true", default=False,
help="Hide secrets on stdout with ***")
parser.add_option("-p", "--passwords", dest="passwords", action="store_true", default=False,
help="Save generic & internet passwords as CSV file")
parser.add_option("-c", "--certs", dest="certs", action="store_true", default=False,
help="Extract certificates and keys")
parser.add_option("-o", "--old", dest="oldpass", action="store_true", default=False,
help="Bruteforce old passcodes")
(options, args) = parser.parse_args()
if len(args) < 2:
parser.print_help()
return
p = readPlist(args[1])
if p.has_key("BackupKeyBag"):
deviceKey = None
if p.has_key("key835"):
deviceKey = p["key835"].decode("hex")
else:
if not p["IsEncrypted"]:
print "This backup is not encrypted, without key 835 nothing in the keychain can be decrypted"
print "If you have key835 for device %s enter it (in hex)" % p["Lockdown"]["UniqueDeviceID"]
d = raw_input()
if len(d) == 32:
p["key835"] = d
deviceKey = d.decode("hex")
plistlib.writePlist(p, args[1])
kb = Keybag.createWithBackupManifest(p, p.get("password",""), deviceKey)
if not kb:
return
k = Keychain4(args[0], kb)
else:
kb = Keybag.createWithPlist(p)
k = keychain_load(args[0], kb, p["key835"].decode("hex"))
if options.display:
k.print_all(options.sanitize)
if options.passwords:
k.save_passwords()
if options.certs:
k.save_certs_keys()
if options.oldpass:
mc = k.get_managed_configuration()
if not mc:
print "Managed configuration not found"
return
print "Bruteforcing %d old passcodes" % len(mc.get("history",[]))
for h in mc["history"]:
p = bruteforce_old_pass(h)
if p:
print "Found : %s" % p
else:
print "Not Found"
if __name__ == "__main__":
main()

View File

@ -0,0 +1,69 @@
from construct import RepeatUntil
from construct.core import Struct, Union
from construct.macros import *
from crypto.aes import AESdecryptCBC
from crypto.aeswrap import AESUnwrap
from zipfile import crc32
import struct
Dkey = 0x446B6579
EMF = 0x454D4621
BAG1 = 0x42414731
DONE = 0x444f4e45 #locker sentinel
#**** = 0x2A2A2A2A #wildcard for erase
#MAGIC (kL) | LEN (2bytes) | TAG (4) | DATA (LEN)
Locker = Struct("Locker",
String("magic",2),
ULInt16("length"),
Union("tag",
ULInt32("int"),
String("tag",4))
,
String("data", lambda ctx: ctx["length"])
)
Lockers = RepeatUntil(lambda obj, ctx: obj.tag.int == DONE, Locker)
def xor_strings(s, key):
res = ""
for i in xrange(len(s)):
res += chr(ord(s[i]) ^ ord(key[i%len(key)]))
return res
def check_effaceable_header(plog):
z = xor_strings(plog[:16], plog[16:32])
if z[:4] != "ecaF":
return False
plog_generation = struct.unpack("<L", plog[0x38:0x3C])[0]
print "Effaceable generation" , plog_generation
plog_crc = crc32(plog[0x40:0x40 + 960], crc32(plog[0x20:0x3C], crc32(z))) & 0xffffffff
assert plog_crc == struct.unpack("<L", plog[0x3C:0x40])[0] , "Effaceable CRC"
print "Effaceable CRC OK"
return True
class EffaceableLockers(object):
def __init__(self, data):
self.lockers = {}
for l in Lockers.parse(data):
tag = l.tag.int & ~0x80000000
tag = struct.pack("<L", tag)[::-1]
self.lockers[tag] = l.data
def display(self):
print "Lockers : " + ", ".join(sorted(self.lockers.keys()))
def get(self, tag):
return self.lockers.get(tag)
def get_DKey(self, k835):
if self.lockers.has_key("Dkey"):
return AESUnwrap(k835, self.lockers["Dkey"])
def get_EMF(self, k89b):
if self.lockers.has_key("LwVM"):
lwvm = AESdecryptCBC(self.lockers["LwVM"], k89b)
return lwvm[-32:]
elif self.lockers.has_key("EMF!"):
return AESdecryptCBC(self.lockers["EMF!"][4:], k89b)

View File

@ -0,0 +1,265 @@
from crypto.PBKDF2 import PBKDF2
from crypto.aes import AESdecryptCBC
from crypto.aeswrap import AESUnwrap
from crypto.aeswrap import AESwrap
from crypto.curve25519 import curve25519
from hashlib import sha256, sha1
from util.bplist import BPlistReader
from util.tlv import loopTLVBlocks, tlvToDict
import hmac
import struct
KEYBAG_TAGS = ["VERS", "TYPE", "UUID", "HMCK", "WRAP", "SALT", "ITER"]
CLASSKEY_TAGS = ["CLAS","WRAP","WPKY", "KTYP", "PBKY"] #UUID
KEYBAG_TYPES = ["System", "Backup", "Escrow", "OTA (icloud)"]
SYSTEM_KEYBAG = 0
BACKUP_KEYBAG = 1
ESCROW_KEYBAG = 2
OTA_KEYBAG = 3
#ORed flags in TYPE since iOS 5
FLAG_UIDPLUS = 0x40000000 # UIDPlus hardware key (>= iPad 3)
FLAG_UNKNOWN = 0x80000000
WRAP_DEVICE = 1
WRAP_PASSCODE = 2
KEY_TYPES = ["AES", "Curve25519"]
PROTECTION_CLASSES={
1:"NSFileProtectionComplete",
2:"NSFileProtectionCompleteUnlessOpen",
3:"NSFileProtectionCompleteUntilFirstUserAuthentication",
4:"NSFileProtectionNone",
5:"NSFileProtectionRecovery?",
6: "kSecAttrAccessibleWhenUnlocked",
7: "kSecAttrAccessibleAfterFirstUnlock",
8: "kSecAttrAccessibleAlways",
9: "kSecAttrAccessibleWhenUnlockedThisDeviceOnly",
10: "kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly",
11: "kSecAttrAccessibleAlwaysThisDeviceOnly"
}
"""
device key : key 0x835
"""
class Keybag(object):
def __init__(self, data):
self.type = None
self.uuid = None
self.wrap = None
self.deviceKey = None
self.unlocked = False
self.passcodeComplexity = 0
self.attrs = {}
self.classKeys = {}
self.KeyBagKeys = None #DATASIGN blob
self.parseBinaryBlob(data)
@staticmethod
def getSystemkbfileWipeID(filename):
mkb = BPlistReader.plistWithFile(filename)
return mkb["_MKBWIPEID"]
@staticmethod
def createWithPlist(pldict):
k835 = pldict.key835.decode("hex")
data = ""
if pldict.has_key("KeyBagKeys"):
data = pldict["KeyBagKeys"].data
else:
data = ""
keybag = Keybag.createWithDataSignBlob(data, k835)
if pldict.has_key("passcodeKey"):
if keybag.unlockWithPasscodeKey(pldict["passcodeKey"].decode("hex")):
print "Keybag unlocked with passcode key"
else:
print "FAILed to unlock keybag with passcode key"
#HAX: inject DKey
keybag.setDKey(pldict)
return keybag
def setDKey(self, device_infos):
self.classKeys[4] = {"CLAS": 4, "KEY": device_infos["DKey"].decode("hex")}
@staticmethod
def createWithSystemkbfile(filename, bag1key, deviceKey=None):
if filename.startswith("bplist"): #HAX
mkb = BPlistReader.plistWithString(filename)
else:
mkb = BPlistReader.plistWithFile(filename)
try:
decryptedPlist = AESdecryptCBC(mkb["_MKBPAYLOAD"].data, bag1key, mkb["_MKBIV"].data, padding=True)
except:
print "FAIL: AESdecryptCBC _MKBPAYLOAD => wrong BAG1 key ?"
return None
if not decryptedPlist.startswith("bplist"):
print "FAIL: decrypted _MKBPAYLOAD is not bplist"
return None
decryptedPlist = BPlistReader.plistWithString(decryptedPlist)
blob = decryptedPlist["KeyBagKeys"].data
kb = Keybag.createWithDataSignBlob(blob, deviceKey)
if decryptedPlist.has_key("OpaqueStuff"):
OpaqueStuff = BPlistReader.plistWithString(decryptedPlist["OpaqueStuff"].data)
kb.passcodeComplexity = OpaqueStuff.get("keyboardType")
return kb
@staticmethod
def createWithDataSignBlob(blob, deviceKey=None):
keybag = tlvToDict(blob)
kb = Keybag(keybag.get("DATA", ""))
kb.deviceKey = deviceKey
kb.KeyBagKeys = blob
kb.unlockAlwaysAccessible()
if len(keybag.get("SIGN", "")):
hmackey = AESUnwrap(deviceKey, kb.attrs["HMCK"])
#hmac key and data are swapped (on purpose or by mistake ?)
sigcheck = hmac.new(key=keybag["DATA"], msg=hmackey, digestmod=sha1).digest()
#fixed in ios 7
if kb.attrs["VERS"] >= 4:
sigcheck = hmac.new(key=hmackey, msg=keybag["DATA"], digestmod=sha1).digest()
if sigcheck != keybag.get("SIGN", ""):
print "Keybag: SIGN check FAIL"
return kb
@staticmethod
def createWithBackupManifest(manifest, password, deviceKey=None):
kb = Keybag(manifest["BackupKeyBag"].data)
kb.deviceKey = deviceKey
if not kb.unlockBackupKeybagWithPasscode(password):
print "Cannot decrypt backup keybag. Wrong password ?"
return
return kb
def isBackupKeybag(self):
return self.type == BACKUP_KEYBAG
def parseBinaryBlob(self, data):
currentClassKey = None
for tag, data in loopTLVBlocks(data):
if len(data) == 4:
data = struct.unpack(">L", data)[0]
if tag == "TYPE":
self.type = data & 0x3FFFFFFF #ignore the flags
if self.type > 3:
print "FAIL: keybag type > 3 : %d" % self.type
elif tag == "UUID" and self.uuid is None:
self.uuid = data
elif tag == "WRAP" and self.wrap is None:
self.wrap = data
elif tag == "UUID":
if currentClassKey:
self.classKeys[currentClassKey["CLAS"]] = currentClassKey
currentClassKey = {"UUID": data}
elif tag in CLASSKEY_TAGS:
currentClassKey[tag] = data
else:
self.attrs[tag] = data
if currentClassKey:
self.classKeys[currentClassKey["CLAS"]] = currentClassKey
def getPasscodekeyFromPasscode(self, passcode):
if self.type == BACKUP_KEYBAG or self.type == OTA_KEYBAG:
return PBKDF2(passcode, self.attrs["SALT"], iterations=self.attrs["ITER"]).read(32)
else:
#Warning, need to run derivation on device with this result
return PBKDF2(passcode, self.attrs["SALT"], iterations=1).read(32)
def unlockBackupKeybagWithPasscode(self, passcode):
if self.type != BACKUP_KEYBAG and self.type != OTA_KEYBAG:
print "unlockBackupKeybagWithPasscode: not a backup keybag"
return False
return self.unlockWithPasscodeKey(self.getPasscodekeyFromPasscode(passcode))
def unlockAlwaysAccessible(self):
for classkey in self.classKeys.values():
k = classkey["WPKY"]
if classkey["WRAP"] == WRAP_DEVICE:
if not self.deviceKey:
continue
k = AESdecryptCBC(k, self.deviceKey)
classkey["KEY"] = k
return True
def unlockWithPasscodeKey(self, passcodekey):
if self.type != BACKUP_KEYBAG and self.type != OTA_KEYBAG:
if not self.deviceKey:
print "ERROR, need device key to unlock keybag"
return False
for classkey in self.classKeys.values():
if not classkey.has_key("WPKY"):
continue
k = classkey["WPKY"]
if classkey["WRAP"] & WRAP_PASSCODE:
k = AESUnwrap(passcodekey, classkey["WPKY"])
if not k:
return False
if classkey["WRAP"] & WRAP_DEVICE:
if not self.deviceKey:
continue
k = AESdecryptCBC(k, self.deviceKey)
classkey["KEY"] = k
self.unlocked = True
return True
def unwrapCurve25519(self, persistent_class, persistent_key):
assert len(persistent_key) == 0x48
#assert persistent_class == 2 #NSFileProtectionCompleteUnlessOpen
mysecret = self.classKeys[persistent_class]["KEY"]
mypublic = self.classKeys[persistent_class]["PBKY"]
hispublic = persistent_key[:32]
shared = curve25519(mysecret, hispublic)
md = sha256('\x00\x00\x00\x01' + shared + hispublic + mypublic).digest()
return AESUnwrap(md, persistent_key[32:])
def unwrapKeyForClass(self, clas, persistent_key, printError=True):
if not self.classKeys.has_key(clas) or not self.classKeys[clas].has_key("KEY"):
if printError: print "Keybag key %d missing or locked" % clas
return ""
ck = self.classKeys[clas]["KEY"]
#if self.attrs.get("VERS", 2) >= 3 and clas == 2:
if self.attrs.get("VERS", 2) >= 3 and self.classKeys[clas].get("KTYP", 0) == 1:
return self.unwrapCurve25519(clas, persistent_key)
if len(persistent_key) == 0x28:
return AESUnwrap(ck, persistent_key)
return
def wrapKeyForClass(self, clas, persistent_key):
if not self.classKeys.has_key(clas) or not self.classKeys[clas].has_key("KEY"):
print "Keybag key %d missing or locked" % clas
return ""
ck = self.classKeys[clas]["KEY"]
return AESwrap(ck, persistent_key)
def printClassKeys(self):
print "Keybag type : %s keybag (%d)" % (KEYBAG_TYPES[self.type], self.type)
print "Keybag version : %d" % self.attrs["VERS"]
print "Keybag UUID : %s" % self.uuid.encode("hex")
print "-"*128
print "".join(["Class".ljust(53),
"WRAP".ljust(5),
"Type".ljust(11),
"Key".ljust(65),
"Public key"])
print "-"*128
for k, ck in self.classKeys.items():
if k == 6: print ""
print "".join([PROTECTION_CLASSES.get(k).ljust(53),
str(ck.get("WRAP","")).ljust(5),
KEY_TYPES[ck.get("KTYP",0)].ljust(11),
ck.get("KEY", "").encode("hex").ljust(65),
ck.get("PBKY", "").encode("hex")])
print ""
def getClearClassKeysDict(self):
if self.unlocked:
d = {}
for ck in self.classKeys.values():
d["%d" % ck["CLAS"]] = ck.get("KEY","").encode("hex")
return d

View File

@ -0,0 +1,381 @@
from crypto.aes import AESdecryptCBC, AESencryptCBC
from hfs.emf import cprotect_xattr, EMFVolume
from hfs.hfs import HFSVolume, hfs_date, HFSFile
from hfs.journal import carveBtreeNode, isDecryptedCorrectly
from hfs.structs import *
from util import sizeof_fmt, makedirs, hexdump
import hashlib
import os
import struct
class NANDCarver(object):
def __init__(self, volume, image, outputdir=None):
self.volume = volume
self.image = image
self.nand = image
self.ftlhax = False
self.userblocks = None
self.lpnToVpn = None
self.files = {}
self.keys = {}
self.encrypted = image.encrypted and hasattr(volume, "emfkey")
self.encrypted = hasattr(volume, "cp_root") and volume.cp_root != None
if outputdir == None:
if image.filename != "remote": outputdir = os.path.join(os.path.dirname(image.filename), "undelete")
else: outputdir = os.path.join(".", "undelete")
print "Carver output %s" % outputdir
self.outputdir = outputdir
self.okfiles = 0
self.first_lba = self.volume.bdev.lbaoffset
self.pageSize = image.pageSize
self.blankPage = "\xDE\xAD\xBE\xEF" * (self.pageSize/4)
self.emfkey = None
self.fileIds = None
self.fastMode = False
if hasattr(volume, "emfkey"):
self.emfkey = volume.emfkey
def carveFile(self, hfsfile, callback, lbas=None, filter_=None):
for e in hfsfile.extents:
if e.blockCount == 0:
break
for i in xrange(e.startBlock, e.startBlock+e.blockCount):
if lbas and not i in lbas:
continue
if self.fastMode:
for vpn in self.ftlhax.get(self.first_lba+i, []):
usn = 0
s,d = self.nand.ftl.YAFTL_readPage(vpn, self.emfkey, self.first_lba+i)
callback(d, usn, filter_)
else:
# s,d = self.nand.ftl.YAFTL_readPage(vpn, self.emfkey, self.first_lba+i)
# callback(d, 0)
usnsForLbn = self.ftlhax.get(self.first_lba+i, [])
for usn in sorted(usnsForLbn.keys())[:-1]:
for vpn in usnsForLbn[usn]:
s,d = self.nand.ftl.YAFTL_readPage(vpn, self.emfkey, self.first_lba+i)
callback(d, usn, filter_)
def _catalogFileCallback(self, data, usn, filter_):
for k,v in carveBtreeNode(data,HFSPlusCatalogKey, HFSPlusCatalogData):
if v.recordType != kHFSPlusFileRecord:
continue
if filter_ and not filter_(k,v):
continue
name = getString(k)
#if not self.filterFileName(name):
# continue
h = hashlib.sha1(HFSPlusCatalogKey.build(k)).digest()
if self.files.has_key(h):
continue
if not self.fileIds.has_key(v.data.fileID):
print "Found deleted file record", v.data.fileID, name.encode("utf-8"), "created", hfs_date(v.data.createDate)
self.files[h] = (name,v, usn)
def _attributesFileCallback(self, data, usn, filter_):
for k,v in carveBtreeNode(data,HFSPlusAttrKey, HFSPlusAttrData):
if getString(k) != "com.apple.system.cprotect":
continue
if self.fileIds.has_key(k.fileID):
continue
filekeys = self.keys.setdefault(k.fileID, [])
try:
cprotect = cprotect_xattr.parse(v.data)
except:
continue
if cprotect.key_size == 0:
continue
filekey = self.volume.keybag.unwrapKeyForClass(cprotect.persistent_class, cprotect.persistent_key, False)
if filekey and not filekey in filekeys:
#print "Found key for file ID ", k.fileID
filekeys.append(filekey)
def carveCatalog(self, lbas=None, filter_=None):
return self.carveFile(self.volume.catalogFile, self._catalogFileCallback, lbas, filter_)
def carveKeys(self, lbas=None):
return self.carveFile(self.volume.xattrFile, self._attributesFileCallback, lbas)
def pagesForLBN(self, lbn):
return self.ftlhax.get(self.first_lba + lbn, {})
def decryptFileBlock(self, pn, filekey, lbn, decrypt_offset):
s, ciphertext = self.nand.ftl.YAFTL_readPage(pn, None, lbn)
if not self.encrypted:
return ciphertext
if not self.image.isIOS5():
return AESdecryptCBC(ciphertext, filekey, self.volume.ivForLBA(lbn))
clear = ""
ivkey = hashlib.sha1(filekey).digest()[:16]
for i in xrange(len(ciphertext)/0x1000):
iv = self.volume.ivForLBA(decrypt_offset, False)
iv = AESencryptCBC(iv, ivkey)
clear += AESdecryptCBC(ciphertext[i*0x1000:(i+1)*0x1000], filekey, iv)
decrypt_offset += 0x1000
return clear
def writeUndeletedFile(self, filename, data):
knownExtensions = (".m4a", ".plist",".sqlite",".sqlitedb", ".jpeg", ".jpg", ".png", ".db",".json",".xml",".sql")
#windows invalid chars \/:*?"<>|
filename = str(filename.encode("utf-8")).translate(None, "\\/:*?\"<>|,")
folder = self.outputdir
if self.outputdir == "./":
folder = folder + "/undelete"
elif filename.lower().endswith(knownExtensions):
ext = filename[filename.rfind(".")+1:]
folder = folder + "/" + ext.lower()
makedirs(folder)
open(folder + "/" + filename, "wb").write(data)
def getFileAtUSN(self, filename, filerecord, filekey, usn, previousVersion=None, exactSize=True):
missing_pages = 0
decrypt_offset = 0
file_pages = []
logicalSize = filerecord.dataFork.logicalSize
for extent in self.volume.getAllExtents(filerecord.dataFork, filerecord.fileID):
for bn in xrange(extent.startBlock, extent.startBlock + extent.blockCount):
pn = self.pagesForLBN(bn).get(usn) #fail
if pn:
clear = self.decryptFileBlock(pn[-1], filekey, bn, decrypt_offset)
file_pages.append(clear)
elif previousVersion:
file_pages.append(previousVersion[len(file_pages)])
else:
file_pages.append(self.blankPage)
missing_pages += 1
decrypt_offset += self.pageSize
print "Recovered %d:%s %d missing pages, size %s, created %s, contentModDate %s" % \
(filerecord.fileID, filename.encode("utf-8"), missing_pages, sizeof_fmt(logicalSize), hfs_date(filerecord.createDate), hfs_date(filerecord.contentModDate))
filename = "%d_%d_%s" % (filerecord.fileID, usn, filename)
if missing_pages == 0:
filename = "OK_" + filename
self.okfiles += 1
data = "".join(file_pages)
if exactSize:
data = data[:logicalSize]
self.writeUndeletedFile(filename, data)
return file_pages
#test for SQLite
def rollbackExistingFile(self, filename):
filerecord = self.volume.getFileRecordForPath(filename)
filekey = self.volume.getFileKeyForFileId(filerecord.fileID)
print "filekey", filekey.encode("hex")
z = None
for extent in filerecord.dataFork.HFSPlusExtentDescriptor:
for bn in xrange(extent.startBlock, extent.startBlock + extent.blockCount):
pages = self.pagesForLBN(bn)
print pages
for usn in sorted(pages.keys()):
d = self.decryptFileBlock(pages[usn][-1], filekey, bn, 0)
if d.startswith("SQL") or True:
filechangecounter = struct.unpack(">L", d[24:28])
print usn, "OK", filechangecounter
z = self.getFileAtUSN(os.path.basename(filename), filerecord, filekey, usn, z)
else:
print usn, "FAIL"
return
def filterFileName(self, filename):
return filename.lower().endswith(".jpg")
def getExistingFileIDs(self):
print "Collecting existing file ids"
self.fileIds = self.volume.listAllFileIds()
print "%d file IDs" % len(self.fileIds.keys())
def carveDeletedFiles_fast(self, catalogLBAs=None, filter_=None):
self.fastMode = True
if not self.ftlhax:
hax, userblocks = self.nand.ftl.YAFTL_lookup1()
self.ftlhax = hax
self.userblocks = userblocks
self.files = {}
if not self.fileIds:
self.getExistingFileIDs()
print "Carving catalog file"
#catalogLBAs = None
self.carveCatalog(catalogLBAs, filter_)
keysLbas = []
for name, vv, usn in self.files.values():
for i in xrange(vv.data.fileID, vv.data.fileID + 100):
if self.volume.xattrTree.search((i, "com.apple.system.cprotect")):
keysLbas.extend(self.volume.xattrTree.getLBAsHax())
break
#print "keysLbas", keysLbas
if self.encrypted and len(self.keys) == 0:
print "Carving attribute file for file keys"
#self.carveKeys(keysLbas)
self.carveKeys()
self.okfiles = 0
total = 0
print "%d files, %d keys" % (len(self.files), len(self.keys))
for name, vv, usn in self.files.values():
if not self.keys.has_key(vv.data.fileID):
print "No file key for %s" % name.encode("utf-8")
keys = set(self.keys.get(vv.data.fileID, [self.emfkey]))
print "%s" % (name.encode("utf-8"))
if self.readFileHax(name, vv.data, keys):
total += 1
print "Carving done, recovered %d deleted files, %d are most likely OK" % (total, self.okfiles)
def carveDeleteFiles_slow(self, catalogLBAs=None, filter_=None):
self.fastMode = False
self.files = {}
if not self.ftlhax:
self.ftlhax = self.nand.ftl.YAFTL_hax2()
if not self.fileIds:
self.getExistingFileIDs()
if self.encrypted and len(self.keys) == 0:
print "Carving attribute file for file keys"
self.carveKeys()
print "Carving catalog file"
self.carveCatalog(catalogLBAs, filter_)
self.okfiles = 0
total = 0
print "%d files" % len(self.files)
for name, vv, usn in self.files.values():
keys = set(self.keys.get(vv.data.fileID, [self.emfkey]))
print "%s num keys = %d" % (name, len(keys))
good_usn = 0
for filekey in keys:
if good_usn:
break
first_block = vv.data.dataFork.HFSPlusExtentDescriptor[0].startBlock
for usn, pn in self.pagesForLBN(first_block).items():
d = self.decryptFileBlock(pn[-1], filekey, self.first_lba+first_block, 0)
if isDecryptedCorrectly(d):
#print "USN for first block : ", usn
good_usn = usn
break
if good_usn == 0:
continue
self.getFileAtUSN(name, vv.data, filekey, good_usn)
def getBBTOC(self, block):
btoc = self.nand.ftl.readBTOCPages(block, self.nand.ftl.totalPages)
if not btoc:
return self.nand.ftl.block_lpn_to_vpn(block)
bbtoc = {}
for i in xrange(len(btoc)):
bbtoc[btoc[i]] = block*self.nand.ftl.vfl.pages_per_sublk + i
return bbtoc
def readFileHax(self, filename, filerecord, filekeys):
lba0 = self.first_lba + filerecord.dataFork.HFSPlusExtentDescriptor[0].startBlock
filekey = None
good_usn = None
first_vpn = 0
first_usn = 0
hax = self.ftlhax
print "%d versions for first lba" % len(hax.get(lba0, []))
for k in filekeys:
for vpn in hax.get(lba0, []):
s, ciphertext = self.nand.ftl.YAFTL_readPage(vpn, key=None, lpn=None)
if not ciphertext:
continue
d = self.decryptFileBlock2(ciphertext, k, lba0, 0)
#hexdump(d[:16])
if isDecryptedCorrectly(d):
filekey = k
first_vpn = vpn
first_usn = good_usn = s.usn
block = vpn / self.nand.ftl.vfl.pages_per_sublk
break
if not filekey:
return False
logicalSize = filerecord.dataFork.logicalSize
missing_pages = 0
file_pages = []
lbns = []
for extent in self.volume.getAllExtents(filerecord.dataFork, filerecord.fileID):
for bn in xrange(extent.startBlock, extent.startBlock + extent.blockCount):
lbns.append(self.first_lba + bn)
datas = {}
usnblocksToLookAT = sorted(filter(lambda x: x >= good_usn, self.userblocks.keys()))[:5]
print usnblocksToLookAT
usnblocksToLookAT.insert(0, 0)
first_block = True
done = False
for usn in usnblocksToLookAT:
if first_block:
bbtoc = self.getBBTOC(block)
first_block = False
else:
bbtoc = self.getBBTOC(self.userblocks[usn])
for lbn in bbtoc.keys():
if not lbn in lbns:
continue
idx = lbns.index(lbn)
s, ciphertext = self.nand.ftl.YAFTL_readPage(bbtoc[lbn], key=None, lpn=None)
if not ciphertext:
continue
ciphertext = self.decryptFileBlock2(ciphertext, filekey, lbn, idx*self.pageSize)
if idx == 0:
if not isDecryptedCorrectly(ciphertext):
continue
datas[idx*self.pageSize] = (ciphertext, lbn - self.first_lba)
#if idx == len(lbns):
if len(datas) == len(lbns):
done=True
break
if done:
break
cleartext = ""
decrypt_offset = 0
for i in xrange(0,logicalSize, self.pageSize):
if datas.has_key(i):
ciphertext, lbn = datas[i]
cleartext += ciphertext
else:
cleartext += self.blankPage
missing_pages += 1
decrypt_offset += self.pageSize
print "Recovered %d:%s %d missing pages, size %s, created %s, contentModDate %s" % \
(filerecord.fileID, filename.encode("utf-8"), missing_pages, sizeof_fmt(logicalSize), hfs_date(filerecord.createDate), hfs_date(filerecord.contentModDate))
filename = "%d_%d_%s" % (filerecord.fileID, first_usn, filename)
if missing_pages == 0:
filename = "OK_" + filename
self.okfiles += 1
if True:#exactSize:
cleartext = cleartext[:logicalSize]
self.writeUndeletedFile(filename, cleartext)
return True
def decryptFileBlock2(self, ciphertext, filekey, lbn, decrypt_offset):
if not self.encrypted:
return ciphertext
if not self.image.isIOS5():
return AESdecryptCBC(ciphertext, filekey, self.volume.ivForLBA(lbn, add=False))
clear = ""
ivkey = hashlib.sha1(filekey).digest()[:16]
for i in xrange(len(ciphertext)/0x1000):
iv = self.volume.ivForLBA(decrypt_offset, False)
iv = AESencryptCBC(iv, ivkey)
clear += AESdecryptCBC(ciphertext[i*0x1000:(i+1)*0x1000], filekey, iv)
decrypt_offset += 0x1000
return clear
def getFileRanges(self, hfsfile):
res = []
for e in hfsfile.extents:
if e.blockCount == 0:
break
res.append(xrange(e.startBlock, e.startBlock+e.blockCount))
return res
def readFSPage(self, vpn, lba):
s,d = self.nand.ftl.YAFTL_readPage(vpn, self.emfkey, self.first_lba+lba)
if s:
return d

View File

@ -0,0 +1,86 @@
import os
import struct
import sys
"""
row-by-row dump
page = data + spare metadata + iokit return code + iokit return code 2
"""
class NANDImageFlat(object):
def __init__(self, filename, geometry):
flags = os.O_RDONLY
if sys.platform == "win32":
flags |= os.O_BINARY
self.fd = os.open(filename, flags)
self.nCEs = geometry["#ce"]
self.pageSize = geometry["#page-bytes"]
self.metaSize = geometry.get("meta-per-logical-page", 12)
self.dumpedPageSize = geometry.get("dumpedPageSize", self.pageSize + self.metaSize + 8)
self.hasIOKitStatus = True
if self.dumpedPageSize == self.pageSize + geometry["#spare-bytes"] or self.dumpedPageSize == self.pageSize + self.metaSize:
self.hasIOKitStatus = False
self.blankPage = "\xFF" * self.pageSize
self.blankSpare = "\xFF" * self.metaSize
self.imageSize = os.path.getsize(filename)
expectedSize = geometry["#ce"] * geometry["#ce-blocks"] * geometry["#block-pages"] * self.dumpedPageSize
if self.imageSize < expectedSize:
raise Exception("Error: image appears to be truncated, expected size=%d" % expectedSize)
print "Image size matches expected size, looks ok"
def _readPage(self, ce, page):
i = page * self.nCEs + ce
off = i * self.dumpedPageSize
os.lseek(self.fd, off, os.SEEK_SET)
return os.read(self.fd, self.dumpedPageSize)
def readPage(self, ce, page):
d = self._readPage(ce, page)
if not d or len(d) != self.dumpedPageSize:
return None,None
if self.hasIOKitStatus:
r1,r2 = struct.unpack("<LL", d[self.pageSize+self.metaSize:self.pageSize+self.metaSize+8])
if r1 != 0x0:
return None, None
data = d[:self.pageSize]
spare = d[self.pageSize:self.pageSize+self.metaSize]
if not self.hasIOKitStatus and data == self.blankPage and spare == self.blankSpare:
return None,None
return spare, data
"""
iEmu NAND format
one file for each CE, start with chip id (8 bytes) then pages
page = non-empty flag (1 byte) + data + spare metadata (12 bytes)
"""
class NANDImageSplitCEs(object):
def __init__(self, folder, geometry):
flags = os.O_RDONLY
if sys.platform == "win32":
flags |= os.O_BINARY
self.fds = []
self.nCEs = geometry["#ce"]
self.pageSize = geometry["#page-bytes"]
self.metaSize = 12
self.npages = 0
self.dumpedPageSize = 1 + self.pageSize + self.metaSize
for i in xrange(self.nCEs):
fd = os.open(folder + "/ce_%d.bin" % i, flags)
self.fds.append(fd)
self.npages += os.fstat(fd).st_size / self.dumpedPageSize
def _readPage(self, ce, page):
fd = self.fds[ce]
off = 8 + page * self.dumpedPageSize #skip chip id
os.lseek(fd, off, os.SEEK_SET)
return os.read(fd, self.dumpedPageSize)
def readPage(self, ce, page):
d = self._readPage(ce, page)
if not d or len(d) != self.dumpedPageSize:
return None,None
if d[0] != '1' and d[0] != '\x01':
return None,None
data = d[1:1+self.pageSize]
spare = d[1+self.pageSize:1+self.pageSize+self.metaSize]
return spare, data

View File

@ -0,0 +1,220 @@
from carver import NANDCarver
from construct.core import Struct
from construct.macros import ULInt32, ULInt16, Array, ULInt8, Padding
from pprint import pprint
from structs import SpareData
from util import hexdump
from vfl import VFL
import plistlib
"""
openiboot/plat-s5l8900/ftl.c
openiboot/plat-s5l8900/includes/s5l8900/ftl.h
"""
FTLCxtLog = Struct("FTLCxtLog",
ULInt32("usn"),
ULInt16("wVbn"),
ULInt16("wLbn"),
ULInt32("wPageOffsets"),
ULInt16("pagesUsed"),
ULInt16("pagesCurrent"),
ULInt32("isSequential")
)
FTLCxtElement2 = Struct("FTLCxtElement2",
ULInt16("field_0"),
ULInt16("field_2")
)
FTLCxt = Struct("FTLCxt",
ULInt32("usnDec"),
ULInt32("nextblockusn"),
ULInt16("wNumOfFreeVb"),
ULInt16("nextFreeIdx"),
ULInt16("swapCounter"),
Array(20, ULInt16("awFreeVb")),
ULInt16("field_36"),
Array(18, ULInt32("pages_for_pawMapTable")),
Array(36, ULInt32("pages_for_pawEraseCounterTable")),
Array(34, ULInt32("pages_for_wPageOffsets")),
ULInt32("pawMapTable"),
ULInt32("pawEraseCounterTable"),
ULInt32("wPageOffsets"),
Array(18, FTLCxtLog),
ULInt32("eraseCounterPagesDirty"),
ULInt16("unk3"),
Array(3, ULInt16("FTLCtrlBlock")),
ULInt32("FTLCtrlPage"),
ULInt32("clean"),
Array(36, ULInt32("pages_for_pawReadCounterTable")),
ULInt32("pawReadCounterTable"),
Array(5, FTLCxtElement2),
ULInt32("field_3C8"),
ULInt32("totalReadCount"),
ULInt32("page_for_FTLCountsTable"),
ULInt32("hasFTLCountsTable"),
Padding(0x420), #, ULInt8("field_3D8")),
ULInt32("versionLower"),
ULInt32("versionUpper")
)
FTL_CTX_TYPE = 0x43
FTL_BLOCK_MAP = 0x44
FTL_ERASE_COUNTER = 0x46
FTL_MOUNTED = 0x47
FTL_CTX_TYPE_MAX = 0x4F
USER_TYPE = 0x40
USER_LAST_TYPE = 0x41 #last user page in superblock?
class FTL(object):
def __init__(self, nand, vfl):
self.nand = nand
self.vfl = vfl
self.pawMapTable = {} #maps logical blocks to virtual blocks
self.pLogs = {}
if not self.FTL_open():
self.FTL_restore()
def FTL_open(self):
minUsnDec = 0xffffffff
ftlCtrlBlock = 0xffff
for vb in self.vfl.VFL_get_FTLCtrlBlock():
s, d = self.vfl.read_single_page(vb * self.vfl.pages_per_sublk)
if not s:
continue
if s.type >= FTL_CTX_TYPE and s.type <= FTL_CTX_TYPE_MAX:
if s.usn < minUsnDec:
ftlCtrlBlock = vb
minUsnDec = s.usn
print ftlCtrlBlock
self.ftlCtrlBlock = ftlCtrlBlock
for p in xrange(self.vfl.pages_per_sublk-1,1, -1):
s, d = self.vfl.read_single_page(ftlCtrlBlock * self.vfl.pages_per_sublk + p)
if not s:
continue
#print s
#print p
if s.type == FTL_CTX_TYPE:
print s.usn
ctx = FTLCxt.parse(d)
if ctx.versionLower == 0x46560001:
print ctx
assert ctx.FTLCtrlPage == (ftlCtrlBlock * self.vfl.pages_per_sublk + p)
break
else:
print "Unclean shutdown, last type 0x%x" % s.type
return False
self.ctx = ctx
print "FTL_open OK !"
return True
def determine_block_type(self, block):
maxUSN = 0
isSequential = True
for page in xrange(self.vfl.pages_per_sublk-1,1, -1):
s, _ = self.vfl.read_single_page(block * self.vfl.pages_per_sublk + page)
if not s:
continue
if s.usn > maxUSN:
maxUSN = s.usn
if s.lpn % self.vfl.pages_per_sublk != page:
isSequential = False
return isSequential, maxUSN
return isSequential, maxUSN
def FTL_restore(self):
self.pLogs = self.vfl.nand.loadCachedData("pLogs")
self.pawMapTable = self.vfl.nand.loadCachedData("pawMapTable")
if self.pLogs and self.pawMapTable:
print "Found cached FTL restore information"
return
self.pawMapTable = {}
self.pLogs = {}
ctx = None
for p in xrange(self.vfl.pages_per_sublk-1,1, -1):
s, d = self.vfl.read_single_page(self.ftlCtrlBlock * self.vfl.pages_per_sublk + p)
if not s:
continue
if s.type == FTL_CTX_TYPE:
print s.usn
ctx = FTLCxt.parse(d)
if ctx.versionLower == 0x46560001:
print ctx
assert ctx.FTLCtrlPage == (self.ftlCtrlBlock * self.vfl.pages_per_sublk + p)
print "Found most recent ctx"
break
if not ctx:
print "FTL_restore fail did not find ctx"
raise
blockMap = {}
self.nonSequential = {}
print "FTL_restore in progress ..."
for sblock in xrange(self.vfl.userSuBlksTotal + 23):
for page in xrange(self.vfl.pages_per_sublk):
s, d = self.vfl.read_single_page(sblock * self.vfl.pages_per_sublk + page)
if not s:
continue
if s.type >= FTL_CTX_TYPE and s.type <= FTL_CTX_TYPE_MAX:
break
if s.type != USER_TYPE and s.type != USER_LAST_TYPE:
print "Weird page type %x at %x %x" % (s.type, sblock, page)
continue
if s.lpn % self.vfl.pages_per_sublk != page:
print "Block %d non sequential" % sblock
self.nonSequential[sblock] = 1
blockMap[sblock] = (s.lpn / self.vfl.pages_per_sublk, s.usn)
break
z = dict([(i, [(a, blockMap[a][1]) for a in blockMap.keys() if blockMap[a][0] ==i]) for i in xrange(self.vfl.userSuBlksTotal)])
for k,v in z.items():
if len(v) == 2:
print k, v
vbA, usnA = v[0]
vbB, usnB = v[1]
if usnA > usnB: #smallest USN is map block, highest log block
self.pawMapTable[k] = vbB
self.restoreLogBlock(k, vbA)
else:
self.pawMapTable[k] = vbA
self.restoreLogBlock(k, vbB)
elif len(v) > 2:
raise Exception("fufu", k, v)
else:
self.pawMapTable[k] = v[0][0]
self.vfl.nand.cacheData("pLogs", self.pLogs)
self.vfl.nand.cacheData("pawMapTable", self.pawMapTable)
def restoreLogBlock(self, lbn, vbn):
log = {"wVbn": vbn, "wPageOffsets": {}}
for page in xrange(self.vfl.pages_per_sublk):
s, d = self.vfl.read_single_page(vbn * self.vfl.pages_per_sublk + page)
if not s:
break
log["wPageOffsets"][s.lpn % self.vfl.pages_per_sublk] = page
self.pLogs[lbn] = log
def mapPage(self, lbn, offset):
if self.pLogs.has_key(lbn):
if self.pLogs[lbn]["wPageOffsets"].has_key(offset):
offset = self.pLogs[lbn]["wPageOffsets"][offset]
#print "mapPage got log %d %d" % (lbn, offset)
return self.pLogs[lbn]["wVbn"] * self.vfl.pages_per_sublk + offset
if not self.pawMapTable.has_key(lbn):
return 0xFFFFFFFF
return self.pawMapTable[lbn] * self.vfl.pages_per_sublk + offset
def readLPN(self, lpn, key=None):
lbn = lpn / self.vfl.pages_per_sublk
offset = lpn % self.vfl.pages_per_sublk
vpn = self.mapPage(lbn, offset)
if vpn == 0xFFFFFFFF:
print "lbn not found %d" % lbn
return "\xFF" * self.nand.pageSize
s,d = self.vfl.read_single_page(vpn, key, lpn)
if not s:
return None
if s.lpn != lpn:
raise Exception("FTL translation FAIL spare lpn=%d vs expected %d" % (s.lpn, lpn))
return d

View File

@ -0,0 +1,425 @@
from crypto.aes import AESdecryptCBC
from firmware.img2 import IMG2
from firmware.img3 import Img3, extract_img3s
from firmware.scfg import parse_SCFG
from hfs.emf import EMFVolume
from hfs.hfs import HFSVolume
from image import NANDImageSplitCEs, NANDImageFlat
from keystore.effaceable import check_effaceable_header, EffaceableLockers
from legacyftl import FTL
from partition_tables import GPT_partitions, parse_lwvm, parse_mbr, parse_gpt, \
APPLE_ENCRYPTED
from progressbar import ProgressBar
from remote import NANDRemote, IOFlashStorageKitClient
from structs import *
from util import sizeof_fmt, write_file, load_pickle, save_pickle, hexdump, \
makedirs
from util.bdev import FTLBlockDevice
from vfl import VFL
from vsvfl import VSVFL
from yaftl import YAFTL
import math
import os
import plistlib
import struct
def ivForPage(page):
iv = ""
for _ in xrange(4):
if (page & 1):
page = 0x80000061 ^ (page >> 1);
else:
page = page >> 1;
iv += struct.pack("<L", page)
return iv
#iOS 3
def getEMFkeyFromCRPT(data, key89B):
assert data.startswith("tprc")
z = AESdecryptCBC(data[4:0x44], key89B)
assert z.startswith("TPRC"), "wrong key89B"
#last_byte = struct.unpack("<Q", z[4:4+8])[0]
emf = z[16:16+32]
return emf
class NAND(object):
H2FMI_HASH_TABLE = gen_h2fmi_hash_table()
def __init__(self, filename, device_infos, ppn=False):
self.device_infos = device_infos
self.partition_table = None
self.lockers = {}
self.iosVersion = 0
self.hasMBR = False
self.metadata_whitening = False
self.filename = filename
self.encrypted = device_infos["hwModel"] not in ["M68AP", "N45AP", "N82AP", "N72AP"]
self.initGeometry(device_infos["nand"])
if os.path.basename(filename).startswith("ce_"):
self.image = NANDImageSplitCEs(os.path.dirname(filename), device_infos["nand"])
elif filename == "remote":
self.image = NANDRemote(self.pageSize, self.metaSize, self.pagesPerBlock, self.bfn)
else:
self.image = NANDImageFlat(filename, device_infos["nand"])
s, page0 = self.readPage(0,0)
self.nandonly = (page0 != None) and page0.startswith("ndrG")
if self.nandonly:
self.encrypted = True
magics = ["DEVICEINFOBBT"]
nandsig = None
if page0 and page0[8:14] == "Darwin":
print "Found old style signature", page0[:8]
nandsig = page0
else:
magics.append("NANDDRIVERSIGN")
#sp0 = {}
sp0 = self.readSpecialPages(0, magics)
print "Found %s special pages in CE 0" % (", ".join(sp0.keys()))
if not self.nandonly:
print "Device does not boot from NAND (=> has a NOR)"
vfltype = '1' #use VSVFL by default
if not nandsig:
nandsig = sp0.get("NANDDRIVERSIGN")
if not nandsig:
print "NANDDRIVERSIGN not found, assuming metadata withening = %d" % self.metadata_whitening
else:
nSig, flags = struct.unpack("<LL", nandsig[:8])
#assert nandsig[3] == chr(0x43)
vfltype = nandsig[1]
self.metadata_whitening = (flags & 0x10000) != 0
print "NAND signature 0x%x flags 0x%x withening=%d, epoch=%s" % (nSig, flags, self.metadata_whitening, nandsig[0])
if not self.nandonly:
if self.device_infos.has_key("lockers"):
self.lockers = EffaceableLockers(self.device_infos.lockers.data)
else:
unit = self.findLockersUnit()
if unit:
self.lockers = EffaceableLockers(unit[0x40:])
self.lockers.display()
if not self.device_infos.has_key("lockers"):
self.device_infos.lockers = plistlib.Data(unit[0x40:0x40+960])
EMF = self.getEMF(device_infos["key89B"].decode("hex"))
dkey = self.getDKey(device_infos["key835"].decode("hex"))
self.device_infos.EMF = EMF.encode("hex")
self.device_infos.DKey = dkey.encode("hex")
deviceuniqueinfo = sp0.get("DEVICEUNIQUEINFO")
if not deviceuniqueinfo:
print "DEVICEUNIQUEINFO not found"
else:
scfg = parse_SCFG(deviceuniqueinfo)
print "Found DEVICEUNIQUEINFO, serial number=%s" % scfg.get("SrNm","SrNm not found !")
if vfltype == '0':
print "Using legacy VFL"
self.vfl = VFL(self)
self.ftl = FTL(self, self.vfl)
elif not ppn:
print "Using VSVFL"
self.vfl = VSVFL(self)
self.ftl = YAFTL(self.vfl)
def initGeometry(self, d):
self.metaSize = d.get("meta-per-logical-page", 0)
if self.metaSize == 0:
self.metaSize = 12
dumpedPageSize = d.get("dumpedPageSize", d["#page-bytes"] + self.metaSize + 8)
self.dump_size= d["#ce"] * d["#ce-blocks"] * d["#block-pages"] * dumpedPageSize
self.totalPages = d["#ce"] * d["#ce-blocks"] * d["#block-pages"]
nand_size = d["#ce"] * d["#ce-blocks"] * d["#block-pages"] * d["#page-bytes"]
hsize = sizeof_fmt(nand_size)
self.bfn = d.get("boot-from-nand", False)
self.dumpedPageSize = dumpedPageSize
self.pageSize = d["#page-bytes"]
self.bootloaderBytes = d.get("#bootloader-bytes", 1536)
self.emptyBootloaderPage = "\xFF" * self.bootloaderBytes
self.blankPage = "\xFF" * self.pageSize
self.nCEs =d["#ce"]
self.blocksPerCE = d["#ce-blocks"]
self.pagesPerBlock = d["#block-pages"]
self.pagesPerCE = self.blocksPerCE * self.pagesPerBlock
self.vendorType = d["vendor-type"]
self.deviceReadId = d.get("device-readid", 0)
self.banks_per_ce_vfl = d["banks-per-ce"]
if d.has_key("metadata-whitening"):
self.metadata_whitening = (d["metadata-whitening"].data == "\x01\x00\x00\x00")
if nand_chip_info.has_key(self.deviceReadId):
self.banks_per_ce_physical = nand_chip_info.get(self.deviceReadId)[7]
else:
#raise Exception("Unknown deviceReadId %x" % self.deviceReadId)
print "!!! Unknown deviceReadId %x, assuming 1 physical bank /CE, will probably fail" % self.deviceReadId
self.banks_per_ce_physical = 1
print "Chip id 0x%x banks per CE physical %d" % (self.deviceReadId, self.banks_per_ce_physical)
self.blocks_per_bank = self.blocksPerCE / self.banks_per_ce_physical
if self.blocksPerCE & (self.blocksPerCE-1) == 0:
self.bank_address_space = self.blocks_per_bank
self.total_block_space = self.blocksPerCE
else:
bank_address_space = next_power_of_two(self.blocks_per_bank)
self.bank_address_space = bank_address_space
self.total_block_space = ((self.banks_per_ce_physical-1)*bank_address_space) + self.blocks_per_bank
self.bank_mask = int(math.log(self.bank_address_space * self.pagesPerBlock,2))
print "NAND geometry : %s (%d CEs (%d physical banks/CE) of %d blocks of %d pages of %d bytes data, %d bytes metdata)" % \
(hsize, self.nCEs, self.banks_per_ce_physical, self.blocksPerCE, self.pagesPerBlock, self.pageSize, d["meta-per-logical-page"])
def unwhitenMetadata(self, meta, pagenum):
if len(meta) != 12:
return None
s = list(struct.unpack("<LLL", meta))
for i in xrange(3):
s[i] ^= NAND.H2FMI_HASH_TABLE[(i+pagenum) % len(NAND.H2FMI_HASH_TABLE)]
return struct.pack("<LLL", s[0], s[1],s[2])
def readBootPage(self, ce, page):
s,d=self.readPage(ce, page)
if d:
return d[:self.bootloaderBytes]
else:
#print "readBootPage %d %d failed" % (ce,page)
return self.emptyBootloaderPage
def readMetaPage(self, ce, block, page, spareType=SpareData):
return self.readBlockPage(ce, block, page, META_KEY, spareType=spareType)
def readBlockPage(self, ce, block, page, key=None, lpn=None, spareType=SpareData):
assert page < self.pagesPerBlock
pn = block * self.pagesPerBlock + page
return self.readPage(ce, pn, key, lpn, spareType=spareType)
def translateabsPage(self, page):
return page % self.nCEs, page/self.nCEs
def readAbsPage(self, page, key=None, lpn=None):
return self.readPage(page % self.nCEs, page/self.nCEs, key, lpn)
def readPage(self, ce, page, key=None, lpn=None, spareType=SpareData):
if ce > self.nCEs or page > self.pagesPerCE:
#hax physical banking
pass#raise Exception("CE %d Page %d out of bounds" % (ce, page))
if self.filename != "remote": #undo banking hax
bank = (page & ~((1 << self.bank_mask) - 1)) >> self.bank_mask
page2 = (page & ((1 << self.bank_mask) - 1))
page2 = bank * (self.blocks_per_bank) * self.pagesPerBlock + page2
spare, data = self.image.readPage(ce, page2)
else:
spare, data = self.image.readPage(ce, page)
if not data:
return None,None
if self.metadata_whitening and spare != "\x00"*12 and len(spare) == 12:
spare = self.unwhitenMetadata(spare, page)
spare = spareType.parse(spare)
if key and self.encrypted:
if lpn != None: pageNum = spare.lpn #XXX
else: pageNum = page
return spare, self.decryptPage(data, key, pageNum)
return spare, data
def decryptPage(self, data, key, pageNum):
return AESdecryptCBC(data, key, ivForPage(pageNum))
def unpackSpecialPage(self, data):
l = struct.unpack("<L", data[0x34:0x38])[0]
return data[0x38:0x38 + l]
def readSpecialPages(self, ce, magics):
print "Searching for special pages..."
specials = {}
if self.nandonly:
magics.append("DEVICEUNIQUEINFO")#, "DIAGCONTROLINFO")
magics = map(lambda s: s.ljust(16,"\x00"), magics)
lowestBlock = self.blocksPerCE - (self.blocksPerCE / 100)
for block in xrange(self.blocksPerCE - 1, lowestBlock, -1):
if len(magics) == 0:
break
#hax for physical banking
bank_offset = self.bank_address_space * (block / self.blocks_per_bank)
for page in xrange(self.pagesPerBlock,-1,-1):
page = (bank_offset + block % self.blocks_per_bank) * self.pagesPerBlock + page
s, data = self.readPage(ce, page)
if data == None:
continue
if data[:16] in magics:
self.encrypted = False
magics.remove(data[:16])
specials[data[:16].rstrip("\x00")] = self.unpackSpecialPage(data)
break
data = self.decryptPage(data, META_KEY, page)
#print data[:16]
if data[:16] in magics:
#print data[:16], block, page
self.encrypted = True
magics.remove(data[:16])
specials[data[:16].rstrip("\x00")] = self.unpackSpecialPage(data)
break
return specials
def readLPN(self, lpn, key):
return self.ftl.readLPN(lpn, key)
def readVPN(self, vpn, key=None, lpn=None):
return self.vfl.read_single_page(vpn, key, lpn)
def dumpSystemPartition(self, outputfilename):
return self.getPartitionBlockDevice(0).dumpToFile(outputfilename)
def dumpDataPartition(self, emf, outputfilename):
return self.getPartitionBlockDevice(1, emf).dumpToFile(outputfilename)
def isIOS5(self):
self.getPartitionTable()
return self.iosVersion == 5
def getPartitionTable(self):
if self.partition_table:
return self.partition_table
pt = None
for i in xrange(10):
d = self.readLPN(i, FILESYSTEM_KEY)
pt = parse_mbr(d)
if pt:
self.hasMBR = True
self.iosVersion = 3
break
gpt = parse_gpt(d)
if gpt:
off = gpt.partition_entries_lba - gpt.current_lba
d = self.readLPN(i+off, FILESYSTEM_KEY)
pt = GPT_partitions.parse(d)[:-1]
self.iosVersion = 4
break
pt = parse_lwvm(d, self.pageSize)
if pt:
self.iosVersion = 5
break
self.partition_table = pt
return pt
def getPartitionBlockDevice(self, partNum, key=None):
pt = self.getPartitionTable()
if self.hasMBR and pt[1].type == APPLE_ENCRYPTED and partNum == 1:
data = self.readLPN(pt[1].last_lba - 1, FILESYSTEM_KEY)
key = getEMFkeyFromCRPT(data, self.device_infos["key89B"].decode("hex"))
if key == None:
if partNum == 0:
key = FILESYSTEM_KEY
elif partNum == 1 and self.device_infos.has_key("EMF"):
key = self.device_infos["EMF"].decode("hex")
return FTLBlockDevice(self, pt[partNum].first_lba, pt[partNum].last_lba, key)
def getPartitionVolume(self, partNum, key=None):
bdev = self.getPartitionBlockDevice(partNum, key)
if partNum == 0:
return HFSVolume(bdev)
elif partNum == 1:
self.device_infos["dataVolumeOffset"] = self.getPartitionTable()[partNum].first_lba
return EMFVolume(bdev, self.device_infos)
def findLockersUnit(self):
if not self.nandonly:
return
for i in xrange(96,128):
for ce in xrange(self.nCEs):
s, d = self.readBlockPage(ce, 1, i)
if d and check_effaceable_header(d):
print "Found effaceable lockers in ce %d block 1 page %d" % (ce,i)
return d
def getLockers(self):
unit = self.findLockersUnit()
if unit:
return unit[0x40:0x40+960]
def getEMF(self, k89b):
return self.lockers.get_EMF(k89b)
def getDKey(self, k835):
return self.lockers.get_DKey(k835)
def readBootPartition(self, block_start, block_end):
res = ""
for i in xrange(block_start*self.pagesPerBlock, block_end*self.pagesPerBlock):
res += self.readBootPage(0, i)
return res
def get_img3s(self):
if not self.nandonly:
print "IMG3s are in NOR"
return []
blob = self.readBootPartition(8, 16)
hdr = IMG2.parse(blob[:0x100])
i = hdr.images_block * hdr.block_size + hdr.images_offset
img3s = extract_img3s(blob[i:i+hdr.images_length*hdr.block_size])
boot = self.readBootPartition(0, 1)
img3s = extract_img3s(boot[0xc00:]) + img3s
return img3s
def extract_img3s(self, outfolder=None):
if not self.nandonly:
print "IMG3s are in NOR"
return
if outfolder == None:
if self.filename != "remote": outfolder = os.path.join(os.path.dirname(self.filename), "img3")
else: outfolder = os.path.join(".", "img3")
makedirs(outfolder)
print "Extracting IMG3s to %s" % outfolder
for img3 in self.get_img3s():
#print img3.sigcheck(self.device_infos.get("key89A").decode("hex"))
print img3.shortname
write_file(outfolder+ "/%s.img3" % img3.shortname, img3.img3)
kernel = self.getPartitionVolume(0).readFile("/System/Library/Caches/com.apple.kernelcaches/kernelcache",returnString=True)
if kernel:
print "kernel"
write_file(outfolder + "/kernelcache.img3", kernel)
def extract_shsh(self, outfolder="."):
if not self.nandonly:
print "IMG3s are in NOR"
return
pass
def getNVRAM(self):
if not self.nandonly:
print "NVRAM is in NOR"
return
#TODO
nvrm = self.readBootPartition(2, 8)
def getBoot(self):
boot = self.readBootPartition(0, 1)
for i in xrange(0x400, 0x600, 16):
name = boot[i:i+4][::-1]
block_start, block_end, flag = struct.unpack("<LLL", boot[i+4:i+16])
if name == "none":
break
print name, block_start, block_end, flag
def cacheData(self, name, data):
if self.filename == "remote":
return None
save_pickle(self.filename + "." + name, data)
def loadCachedData(self, name):
try:
if self.filename == "remote":
return None
return load_pickle(self.filename + "." + name)
except:
return None
def dump(self, p):
#hax ioflashstoragekit can only handle 1 connexion
if self.filename == "remote":
del self.image
ioflash = IOFlashStorageKitClient()
ioflash.dump_nand(p)
#restore proxy
if self.filename == "remote":
self.image = NANDRemote(self.pageSize, self.metaSize, self.pagesPerBlock, self.bfn)

View File

@ -0,0 +1,132 @@
from construct import *
from zipfile import crc32
GPT_HFS = "005346480000aa11aa1100306543ecac".decode("hex")
GPT_EMF = "00464d450000aa11aa1100306543ecac".decode("hex")
LWVM_partitionRecord = Struct("LWVM_partitionRecord",
String("type", 16),
String("guid", 16),
ULInt64("begin"),
ULInt64("end"),
ULInt64("attribute"),
String("name", 0x48, encoding="utf-16-le", padchar="\x00")
)
LWVM_MAGIC = "6a9088cf8afd630ae351e24887e0b98b".decode("hex")
LWVM_header = Struct("LWVM_header",
String("type",16),
String("guid", 16),
ULInt64("mediaSize"),
ULInt32("numPartitions"),
ULInt32("crc32"),
Padding(464),
Array(12, LWVM_partitionRecord),
Array(1024, ULInt16("chunks"))
)
GPT_header = Struct("GPT_header",
String("signature", 8),
ULInt32("revision"),
ULInt32("header_size"),
SLInt32("crc"), #hax to match python signed crc
ULInt32("zero"),
ULInt64("current_lba"),
ULInt64("backup_lba"),
ULInt64("first_usable_lba"),
ULInt64("last_usable_lba"),
String("disk_guid", 16),
ULInt64("partition_entries_lba"),
ULInt32("num_partition_entries"),
ULInt32("size_partition_entry"),
ULInt32("crc_partition_entries")
)
GPT_entry = Struct("GPT_entry",
String("partition_type_guid", 16),
String("partition_guid", 16),
ULInt64("first_lba"),
ULInt64("last_lba"),
ULInt64("attributes"),
String("name", 72, encoding="utf-16-le", padchar="\x00"),
)
GPT_partitions = RepeatUntil(lambda obj, ctx: obj["partition_type_guid"] == "\x00"*16, GPT_entry)
APPLE_ENCRYPTED = 0xAE
MBR_entry = Struct("MBR_entry",
Byte("status"),
Bytes("chs_start",3),
Byte("type"),
Bytes("chs_last",3),
ULInt32("lba_start"),
ULInt32("num_sectors")
)
MBR = Struct("MBR",
String("code",440),
ULInt32("signature"),
ULInt16("zero"),
Array(4, MBR_entry),
OneOf(ULInt16("magic"), [0xAA55])
)
def parse_mbr(data):
try:
mbr = MBR.parse(data)
if mbr.MBR_entry[0].type == 0xEE:
print "Found protective MBR"
return None
res = mbr.MBR_entry[:2]
for p in res:
p.first_lba = p.lba_start
p.last_lba = p.lba_start + p.num_sectors
return res
except:
return None
def parse_gpt(data):
gpt = GPT_header.parse(data)
if gpt.signature != "EFI PART":
return None
print "Found GPT header current_lba=%d partition_entries_lba=%d" % (gpt.current_lba, gpt.partition_entries_lba)
assert gpt.partition_entries_lba > gpt.current_lba
check = gpt.crc
gpt.crc = 0
actual = crc32(GPT_header.build(gpt))
if actual != check:
print "GPT crc check fail %d vs %d" % (actual, check)
return None
return gpt
def parse_lwvm(data, pageSize):
try:
hdr = LWVM_header.parse(data)
if hdr.type != LWVM_MAGIC:
print "LwVM magic mismatch"
return
tocheck = data[:44] + "\x00\x00\x00\x00" + data[48:0x1000]
check = crc32(tocheck) & 0xffffffff
if check != hdr.crc32:
return None
print "LwVM header CRC OK"
partitions = hdr.LWVM_partitionRecord[:hdr.numPartitions]
deviceSize=0
#XXX: HAAAAAAAX
for s in [8, 16, 32, 64, 128]:
if hdr.mediaSize < (s* 1024*1024*1024):
deviceSize = s
break
for i in xrange(len(hdr.chunks)):
if hdr.chunks[i] == 0x0:
lba0 = (i * deviceSize*1024*1024) / pageSize
partitions[0].first_lba = lba0
partitions[0].last_lba = lba0 + (partitions[0].end - partitions[0].begin) / pageSize
elif hdr.chunks[i] == 0x1000:
lbad = (i * deviceSize*1024*1024) / pageSize
partitions[1].first_lba = lbad
partitions[1].last_lba = lbad + (partitions[1].end - partitions[1].begin) / pageSize
return partitions
except:
return None

View File

@ -0,0 +1,99 @@
from progressbar import ProgressBar
from usbmux import usbmux
from util import hexdump, sizeof_fmt
import datetime
import hashlib
import struct
import os
CMD_DUMP = 0
CMD_PROXY = 1
kIOFlashStorageOptionRawPageIO = 0x002
kIOFlashStorageOptionBootPageIO = 0x100
class IOFlashStorageKitClient(object):
def __init__(self, udid=None, host="localhost", port=2000):
self.host = host
self.port = port
self.connect(udid)
def connect(self, udid=None):
mux = usbmux.USBMux()
mux.process(1.0)
if not mux.devices:
print "Waiting for iOS device"
while not mux.devices:
mux.process(1.0)
if not mux.devices:
print "No device found"
return
dev = mux.devices[0]
try:
self.s = mux.connect(dev, self.port)
except:
raise Exception("Connexion to device %s port %d failed" % (dev.serial, self.port))
def send_command(self, cmd):
return self.s.send(struct.pack("<L", cmd))
def dump_nand(self, filename):
f = open(filename, "wb")
self.send_command(CMD_DUMP)
zz = self.s.recv(8)
totalSize = struct.unpack("<Q", zz)[0]
recvSize = 0
print "Dumping %s NAND to %s" % (sizeof_fmt(totalSize), filename)
pbar = ProgressBar(totalSize)
pbar.start()
h = hashlib.sha1()
while recvSize < totalSize:
pbar.update(recvSize)
d = self.s.recv(8192*2)
if not d or len(d) == 0:
break
h.update(d)
f.write(d)
recvSize += len(d)
pbar.finish()
f.close()
print "NAND dump time : %s" % str(datetime.timedelta(seconds=pbar.seconds_elapsed))
print "SHA1: %s" % h.hexdigest()
if recvSize != totalSize:
print "dump_nand FAIL"
class NANDRemote(object):
def __init__(self, pageSize, spareSize, pagesPerBlock, bfn):
self.spareSize = spareSize
self.pageSize = pageSize
self.pagesPerBlock = pagesPerBlock
self.bootFromNand = bfn
self.client = IOFlashStorageKitClient()
self.client.send_command(CMD_PROXY)
def readPage(self, ce, page):
options = 0
spareSize = self.spareSize
if self.bootFromNand and page < 16*self.pagesPerBlock:#XXX hardcoded for now
options = kIOFlashStorageOptionBootPageIO
spareSize = 0
d = struct.pack("<LLLL", ce, page, spareSize, options)
self.client.s.send(d)
torecv = self.pageSize+8+spareSize
d = ""
while len(d) != torecv:
zz = self.client.s.recv(torecv)
if not zz:
break
d += zz
pageData = d[:self.pageSize]
spareData = d[self.pageSize:self.pageSize+spareSize]
r1,r2 = struct.unpack("<LL", d[self.pageSize+spareSize:self.pageSize+spareSize+8])
if r1 == 0xe00002e5:
return None, None
#print ce, page, "%x" % r1, r2, pageData[:0x10].encode("hex"), spareData[:0x10].encode("hex")
if spareData == "":
spareData = "\xFF" * self.spareSize
return spareData, pageData

View File

@ -0,0 +1,83 @@
from construct.core import Struct, Union
from construct.macros import *
#hardcoded iOS keys
META_KEY = "92a742ab08c969bf006c9412d3cc79a5".decode("hex")
FILESYSTEM_KEY = "f65dae950e906c42b254cc58fc78eece".decode("hex")
def next_power_of_two(z):
i = 1
while i < z:
i <<= 1
return i
def CEIL_DIVIDE(val, amt):
return (((val) + (amt) - 1) / (amt))
#from openiboot/plat-s5l8920/h2fmi.c
#blocks_per_ce, pages_per_block, bytes_per_page, bytes_per_spare, unk5, unk6, unk7, banks_per_ce, unk9
#some values change in openiboot/plat-a4/h2fmi.c, but banks_per_ce is ok
nand_chip_info = {
0x7294D7EC : [ 0x1038, 0x80, 0x2000, 0x1B4, 0xC, 0, 8, 1, 0 ],
0x72D5DEEC : [ 0x2070, 0x80, 0x2000, 0x1B4, 0xC, 0, 8, 2, 0 ],
0x29D5D7EC : [ 0x2000, 0x80, 0x1000, 0xDA, 8, 0, 2, 2, 0 ],
0x2994D5EC : [ 0x1000, 0x80, 0x1000, 0xDA, 8, 0, 2, 1, 0 ],
0xB614D5EC : [ 0x1000, 0x80, 0x1000, 0x80, 4, 0, 2, 1, 0 ],
0xB655D7EC : [ 0x2000, 0x80, 0x1000, 0x80, 4, 0, 2, 2, 0 ],
0xB614D5AD : [ 0x1000, 0x80, 0x1000, 0x80, 4, 0, 3, 1, 0 ],
0x3294E798 : [ 0x1004, 0x80, 0x2000, 0x1C0, 0x10, 0, 1, 1, 0 ],
0xBA94D598 : [ 0x1000, 0x80, 0x1000, 0xDA, 8, 0, 1, 1, 0 ],
0xBA95D798 : [ 0x2000, 0x80, 0x1000, 0xDA, 8, 0, 1, 2, 0 ],
0x3294D798 : [ 0x1034, 0x80, 0x2000, 0x178, 8, 0, 1, 1, 0 ],
0x3295DE98 : [ 0x2068, 0x80, 0x2000, 0x178, 8, 0, 1, 2, 0 ],
0x3295EE98 : [ 0x2008, 0x80, 0x2000, 0x1C0, 0x18, 0, 1, 2, 0 ],
0x3E94D789 : [ 0x2000, 0x80, 0x1000, 0xDA, 0x10, 0, 5, 1, 0 ],
0x3ED5D789 : [ 0x2000, 0x80, 0x1000, 0xDA, 8, 0, 6, 2, 0 ],
0x3ED5D72C : [ 0x2000, 0x80, 0x1000, 0xDA, 8, 0, 5, 2, 0 ],
0x3E94D72C : [ 0x2000, 0x80, 0x1000, 0xDA, 0xC, 0, 7, 1, 0 ],
0x4604682C : [ 0x1000, 0x100, 0x1000, 0xE0, 0xC, 0, 7, 1, 0 ],
0x3294D745 : [ 0x1000, 0x80, 0x2000, 0x178, 8, 0, 9, 1, 0 ],
0x3295DE45 : [ 0x2000, 0x80, 0x2000, 0x178, 8, 0, 9, 2, 0 ],
0x32944845 : [ 0x1000, 0x80, 0x2000, 0x1C0, 8, 0, 9, 1, 0 ],
0x32956845 : [ 0x2000, 0x80, 0x2000, 0x1C0, 8, 0, 9, 2, 0 ],
}
#https://github.com/iDroid-Project/openiBoot/blob/master/openiboot/plat-a4/h2fmi.c
def gen_h2fmi_hash_table():
val = 0x50F4546A;
h2fmi_hash_table = [0]*256
for i in xrange(256):
val = ((0x19660D * val) + 0x3C6EF35F) & 0xffffffff;
for j in xrange(762):
val = ((0x19660D * val) + 0x3C6EF35F) & 0xffffffff;
h2fmi_hash_table[i] = val & 0xffffffff
return h2fmi_hash_table
# Page types (as defined in the spare data "type" bitfield)
PAGETYPE_INDEX = 0x4 #Index block indicator
PAGETYPE_LBN = 0x10 # User data
PAGETYPE_FTL_CLEAN = 0x20 # FTL context (unmounted, clean)
PAGETYPE_VFL = 0x80 #/ VFL context
SpareData = Struct("SpareData",
ULInt32("lpn"),
ULInt32("usn"),
ULInt8("field_8"),
ULInt8("type"),
ULInt16("field_A")
)
# Block status (as defined in the BlockStruct structure)
BLOCKSTATUS_ALLOCATED = 0x1
BLOCKSTATUS_FTLCTRL = 0x2
BLOCKSTATUS_GC = 0x4
BLOCKSTATUS_CURRENT = 0x8
BLOCKSTATUS_FTLCTRL_SEL = 0x10
BLOCKSTATUS_I_GC = 0x20
BLOCKSTATUS_I_ALLOCATED = 0x40
BLOCKSTATUS_I_CURRENT = 0x80
BLOCKSTATUS_FREE = 0xFF
ERROR_ARG = 0x80000001
ERROR_NAND = 0x80000002
ERROR_EMPTY = 0x80000003

View File

@ -0,0 +1,188 @@
from array import array
from construct.core import Struct, Union
from construct.macros import *
from structs import next_power_of_two, CEIL_DIVIDE, PAGETYPE_VFL
import struct
"""
https://github.com/iDroid-Project/openiBoot/blob/master/plat-s5l8900/includes/s5l8900/ftl.h
https://github.com/iDroid-Project/openiBoot/blob/master/plat-s5l8900/ftl.c
https://github.com/iDroid-Project/openiBoot/blob/master/plat-s5l8900/nand.c
static const NANDDeviceType SupportedDevices[] = {
"""
SupportedDevices = {0x2555D5EC: [8192, 128, 4, 64, 4, 2, 4, 2, 7744, 4, 6],
0xB614D5EC: [4096, 128, 8, 128, 4, 2, 4, 2, 3872, 4, 6],
0xB655D7EC: [8192, 128, 8, 128, 4, 2, 4, 2, 7744, 4, 6],
0xA514D3AD: [4096, 128, 4, 64, 4, 2, 4, 2, 3872, 4, 6],
0xA555D5AD: [8192, 128, 4, 64, 4, 2, 4, 2, 7744, 4, 6],
0xB614D5AD: [4096, 128, 8, 128, 4, 2, 4, 2, 3872, 4, 6],
0xB655D7AD: [8192, 128, 8, 128, 4, 2, 4, 2, 7744, 4, 6],
0xA585D598: [8320, 128, 4, 64, 6, 2, 4, 2, 7744, 4, 6],
0xBA94D598: [4096, 128, 8, 216, 6, 2, 4, 2, 3872, 8, 8],
0xBA95D798: [8192, 128, 8, 216, 6, 2, 4, 2, 7744, 8, 8],
0x3ED5D789: [8192, 128, 8, 216, 4, 2, 4, 2, 7744, 8, 8],
0x3E94D589: [4096, 128, 8, 216, 4, 2, 4, 2, 3872, 8, 8],
0x3ED5D72C: [8192, 128, 8, 216, 4, 2, 4, 2, 7744, 8, 8],
0x3E94D52C: [4096, 128, 8, 216, 4, 2, 4, 2, 3872, 8, 8]
}
_vfl_vfl_context = Struct("_vfl_vfl_context",
ULInt32("usn_inc"),
Array(3, ULInt16("control_block")),
ULInt16("unk1"),
ULInt32("usn_dec"),
ULInt16("active_context_block"),
ULInt16("next_context_page"),
ULInt16("unk2"),
ULInt16("field_16"),
ULInt16("field_18"),
ULInt16("num_reserved_blocks"),
ULInt16("reserved_block_pool_start"),
ULInt16("total_reserved_blocks"),
Array(820, ULInt16("reserved_block_pool_map")),
Array(282, ULInt8("bad_block_table")),
Array(4, ULInt16("vfl_context_block")),
ULInt16("remapping_schedule_start"),
Array(0x48, ULInt8("unk3")),
ULInt32("version"),
ULInt32("checksum1"),
ULInt32("checksum2")
)
_vfl_vsvfl_spare_data = Struct("_vfl_vsvfl_spare_data",
Union("foo",
Struct("user",ULInt32("logicalPageNumber"),ULInt32("usn")),
Struct("meta",ULInt32("usnDec"),ULInt16("idx"), ULInt8("field_6"), ULInt8("field_7"))
),
ULInt8("type2"),
ULInt8("type1"),
ULInt8("eccMark"),
ULInt8("field_B"),
)
def vfl_checksum(data):
x = 0
y = 0
for z in array("I", data):
x = (x + z) & 0xffffffff
y = (y ^ z) & 0xffffffff
return (x + 0xAABBCCDD) & 0xffffffff, (y ^ 0xAABBCCDD) & 0xffffffff
def vfl_check_checksum(ctx, ctxtype):
c1, c2 = vfl_checksum(ctxtype.build(ctx)[:-8])
return c1 == ctx.checksum1 and c2 == ctx.checksum2
class VFL(object):
def __init__(self, nand):
self.nand = nand
#XXX check
self.banks_total = nand.nCEs * nand.banks_per_ce_physical
self.num_ce = nand.nCEs
self.banks_per_ce = nand.banks_per_ce_physical
self.blocks_per_ce = nand.blocksPerCE
self.pages_per_block = nand.pagesPerBlock
self.pages_per_block_2 = next_power_of_two(self.pages_per_block)
self.pages_per_sublk = self.pages_per_block * self.banks_per_ce * self.num_ce
self.blocks_per_bank = self.blocks_per_ce / self.banks_per_ce
self.blocks_per_bank_vfl = self.blocks_per_ce / self.banks_per_ce
self.vendorType = nand.vendorType
self.fs_start_block = 5
#field_4 = 5;
if not SupportedDevices.has_key(nand.deviceReadId):
raise Exception("VFL: unsupported device 0x%x" % nand.deviceReadId)
userSuBlksTotal = self.userSuBlksTotal = SupportedDevices[nand.deviceReadId][8]#7744
userPagesTotal = userSuBlksTotal * self.pages_per_sublk
suBlksTotal = self.blocks_per_ce
FTLData_field_2 = suBlksTotal - userSuBlksTotal - 28
print suBlksTotal, userSuBlksTotal, FTLData_field_2
FTLData_field_4 = FTLData_field_2 + 5
self.FTLData_field_4 = FTLData_field_4
#FTLData_sysSuBlks = FTLData_field_2 + 4
#FTLData_field_6 = 3
#FTLData_field_8 = 23
self.vflContexts = []
self.bbt = []
self.current_version = 0
self.context = None
reserved_blocks = 0
fs_start_block = reserved_blocks+10 #XXX
for ce in xrange(self.num_ce):
for b in xrange(reserved_blocks, fs_start_block):
s, d = nand.readMetaPage(ce, b, 0, _vfl_vsvfl_spare_data)
if not d:
continue
vflctx = _vfl_vfl_context.parse(d)
if not vfl_check_checksum(vflctx, _vfl_vfl_context):
vflctx = None
continue
break
MostRecentVFLCxtBlock = -1
minUsn = 0xFFFFFFFF
for b in vflctx.vfl_context_block:
s, d = nand.readMetaPage(ce, b, 0, _vfl_vsvfl_spare_data)
if not d:
continue
if s.foo.meta.usnDec > 0 and s.foo.meta.usnDec <= minUsn:
minUsn = s.foo.meta.usnDec;
MostRecentVFLCxtBlock = b
if MostRecentVFLCxtBlock == -1:
print "MostRecentVFLCxtBlock == -1"
return
last = None
for pageNum in xrange(0, self.pages_per_block, 1):
s,d = nand.readMetaPage(ce, MostRecentVFLCxtBlock, pageNum, _vfl_vsvfl_spare_data)
if not d:
break
vflctx = _vfl_vfl_context.parse(d)
if vfl_check_checksum(vflctx, _vfl_vfl_context):
last = vflctx
if not last:
raise Exception("VFL open FAIL 1")
self.vflContexts.append(last)
if last.version == 1 and last.usn_inc >= self.current_version:
self.current_version = last.usn_inc
self.context = last
if not self.context:
raise Exception("VFL open FAIL")
print "VFL context open OK"
def VFL_get_FTLCtrlBlock(self):
for ctx in self.vflContexts:
if ctx.usn_inc == self.current_version:
return ctx.control_block
def vfl_is_good_block(self, bbt, block):
if block > self.blocks_per_ce:
raise Exception("vfl_is_good_block block %d out of bounds" % block)
index = block/8
return ((bbt[index / 8] >> (7 - (index % 8))) & 0x1) == 0x1
def virtual_block_to_physical_block(self, ce, pBlock):
if self.vfl_is_good_block(self.vflContexts[ce].bad_block_table, pBlock):
return pBlock
ctx = self.vflContexts[ce]
for pwDesPbn in xrange(0, ctx.num_reserved_blocks):
if ctx.reserved_block_pool_map[pwDesPbn] == pBlock:
if pwDesPbn > self.blocks_per_ce:
raise Exception("Destination physical block for remapping is greater than number of blocks per bank!")
return ctx.reserved_block_pool_start + pwDesPbn
print "Bad block %d not remapped" % pBlock
return pBlock
def virtual_page_number_to_virtual_address(self, vpn):
vbank = vpn % self.num_ce
vblock = vpn / self.pages_per_sublk
vpage = (vpn / self.num_ce) % self.pages_per_block
return vbank, vblock, vpage
def read_single_page(self, vpn, key=None, lpn=None):
vpn += self.pages_per_sublk * self.FTLData_field_4
vbank, vblock, vpage = self.virtual_page_number_to_virtual_address(vpn)
pblock = self.virtual_block_to_physical_block(vbank, vblock)
#print "VFL read_single_page %d => %d, %d" % (vpn,ce,pPage)
return self.nand.readPage(vbank, pblock*self.nand.pagesPerBlock + vpage, key, lpn)

View File

@ -0,0 +1,193 @@
from construct import *
from structs import next_power_of_two, PAGETYPE_VFL, CEIL_DIVIDE
from vfl import vfl_check_checksum, _vfl_vsvfl_spare_data
"""
https://github.com/iDroid-Project/openiBoot/blob/master/vfl-vsvfl/vsvfl.c
https://github.com/iDroid-Project/openiBoot/blob/master/vfl-vsvfl/includes/vfl/vsvfl.h
"""
_vfl_vsvfl_context = Struct("_vfl_vsvfl_context",
ULInt32("usn_inc"),
ULInt32("usn_dec"),
ULInt32("ftl_type"),
ULInt16("usn_block"),
ULInt16("usn_page"),
ULInt16("active_context_block"),
ULInt16("write_failure_count"),
ULInt16("bad_block_count"),
Array(4, ULInt8("replaced_block_count")),
ULInt16("num_reserved_blocks"),
ULInt16("field_1C"),
ULInt16("total_reserved_blocks"),
Array(6, ULInt8("field_20")),
Array(820, ULInt16("reserved_block_pool_map")),
Array(4, ULInt16("vfl_context_block")),
ULInt16("usable_blocks_per_bank"),
ULInt16("reserved_block_pool_start"),
Array(3, ULInt16("control_block")),
ULInt16("scrub_list_length"),
Array(20, ULInt16("scrub_list")),
Array(4, ULInt32("field_6CA")),
ULInt32("vendor_type"),
Array(204, ULInt8("field_6DE")),
ULInt16("remapping_schedule_start"),
Array(0x48, ULInt8("unk3")),
ULInt32("version"),
ULInt32("checksum1"),
ULInt32("checksum2")
)
class VSVFL(object):
def __init__(self, nand):
self.nand = nand
self.banks_per_ce_vfl = 1
if self.nand.vendorType in [0x100010, 0x100014, 0x120014, 0x150011]:
self.banks_per_ce_vfl = 2
self.banks_total = nand.nCEs * self.banks_per_ce_vfl
self.num_ce = nand.nCEs
self.banks_per_ce = nand.banks_per_ce_physical
self.blocks_per_ce = nand.blocksPerCE
self.pages_per_block = nand.pagesPerBlock
self.pages_per_block_2 = next_power_of_two(self.pages_per_block)
self.pages_per_sublk = self.pages_per_block * self.banks_per_ce_vfl * self.num_ce
self.blocks_per_bank = self.blocks_per_ce / self.banks_per_ce
self.blocks_per_bank_vfl = self.blocks_per_ce / self.banks_per_ce_vfl
self.vendorType = nand.vendorType
if self.vendorType == 0x10001:
self.virtual_to_physical = self.virtual_to_physical_10001
elif self.vendorType == 0x150011:
self.virtual_to_physical = self.virtual_to_physical_100014
elif self.vendorType in [0x100010, 0x100014, 0x120014]:
self.virtual_to_physical = self.virtual_to_physical_150011
else:
raise Exception("VSVFL: unsupported vendor 0x%x" % self.vendorType)
self.bank_address_space = nand.bank_address_space
self.vflContexts = []
self.bbt = []
self.current_version = 0
reserved_blocks = 0
if self.nand.bfn:
reserved_blocks = 16
fs_start_block = reserved_blocks+16 #XXX
for ce in xrange(self.num_ce):
vflctx = None
for b in xrange(reserved_blocks, fs_start_block):
s, d = nand.readMetaPage(ce, b, 0, _vfl_vsvfl_spare_data)
if not d:
continue
vflctx = _vfl_vsvfl_context.parse(d)
if not vfl_check_checksum(vflctx, _vfl_vsvfl_context):
vflctx = None
continue
break
if not vflctx:
raise Exception("Unable to find VSVFL context for CE %d" % ce)
MostRecentVFLCxtBlock = -1
minUsn = 0xFFFFFFFF
for b in vflctx.vfl_context_block:
s, d = nand.readMetaPage(ce, b, 0, _vfl_vsvfl_spare_data)
if not d or s.type1 != PAGETYPE_VFL:
continue
if s.foo.meta.usnDec > 0 and s.foo.meta.usnDec <= minUsn:
minUsn = s.foo.meta.usnDec;
MostRecentVFLCxtBlock = b
if MostRecentVFLCxtBlock == -1:
print "MostRecentVFLCxtBlock == -1"
return
last = None
for pageNum in xrange(0, self.pages_per_block, 1):
s,d = nand.readMetaPage(ce, MostRecentVFLCxtBlock, pageNum, _vfl_vsvfl_spare_data)
if not d or s.type1 != PAGETYPE_VFL:
break
last = d
vflctx = _vfl_vsvfl_context.parse(last)
if not vfl_check_checksum(vflctx, _vfl_vsvfl_context):
print "VSVFL checksum FAIL"
self.vflContexts.append(vflctx)
if vflctx.version == 2 and vflctx.usn_inc >= self.current_version:
self.current_version = vflctx.usn_inc
self.context = vflctx
if not self.context:
raise Exception("VSVFL open FAIL")
num_reserved = self.vflContexts[0].reserved_block_pool_start
num_non_reserved = self.blocks_per_bank_vfl - num_reserved
for ce in xrange(self.num_ce):
bbt = [0xFF] * (CEIL_DIVIDE(self.blocks_per_ce, 8))
ctx = self.vflContexts[ce]
for bank in xrange(0, self.banks_per_ce_vfl):
for i in xrange(0, num_non_reserved):
mapEntry = ctx.reserved_block_pool_map[bank*num_non_reserved + i]
if mapEntry == 0xFFF0:
continue
if mapEntry < self.blocks_per_ce:
pBlock = mapEntry
elif mapEntry > 0xFFF0:
pBlock = self.virtual_block_to_physical_block(ce + bank * self.num_ce, num_reserved + i)
else:
print "VSVFL: bad map table"
bbt[pBlock / 8] &= ~(1 << (pBlock % 8))
self.bbt.append(bbt)
print "VSVFL context open OK"
def VFL_get_FTLCtrlBlock(self):
for ctx in self.vflContexts:
if ctx.usn_inc == self.current_version:
return ctx.control_block
def virtual_to_physical_10001(self, vBank, vPage):
return vBank, vPage
def virtual_to_physical_100014(self, vBank, vPage):
pBank = vBank / self.num_ce;
pPage = ((self.pages_per_block - 1) & vPage) | (2 * (~(self.pages_per_block - 1) & vPage))
if (pBank & 1):
pPage |= self.pages_per_block
return vBank % self.num_ce, pPage
def virtual_to_physical_150011(self, vBank, vPage):
pBlock = 2 * (vPage / self.pages_per_block)
if(vBank % (2 * self.num_ce) >= self.num_ce):
pBlock += 1
return vBank % self.num_ce, self.pages_per_block * pBlock | (vPage % 128)
def virtual_block_to_physical_block(self, vBank, vBlock):
ce, pPage = self.virtual_to_physical(vBank, self.pages_per_block * vBlock)
return pPage / self.pages_per_block
def vfl_is_good_block(self, bbt, block):
if block > self.blocks_per_ce:
raise Exception("vfl_is_good_block block %d out of bounds" % block)
return (bbt[block / 8] & (1 << (block % 8))) != 0
def remap_block(self, ce, pBlock):
if self.vfl_is_good_block(self.bbt[ce], pBlock):
return pBlock
ctx = self.vflContexts[ce]
for pwDesPbn in xrange(0, self.blocks_per_ce - ctx.reserved_block_pool_start * self.banks_per_ce_vfl):
if ctx.reserved_block_pool_map[pwDesPbn] == pBlock:
vBank = ce + self.num_ce * (pwDesPbn / (self.blocks_per_bank_vfl - ctx.reserved_block_pool_start))
vBlock = ctx.reserved_block_pool_start + (pwDesPbn % (self.blocks_per_bank_vfl - ctx.reserved_block_pool_start))
z = self.virtual_block_to_physical_block(vBank, vBlock)
#print "remapped block %d => %d" % (pBlock, z)
return z
print "Bad block %d not remapped" % pBlock
return pBlock
def virtual_page_number_to_physical(self, vpn):
vBank = vpn % self.banks_total
ce = vBank % self.nand.nCEs
pBlock = self.virtual_block_to_physical_block(vBank, vpn / self.pages_per_sublk)
pBlock = self.remap_block(ce, pBlock)
bank_offset = self.bank_address_space * (pBlock / self.blocks_per_bank)
page = self.pages_per_block_2 * (bank_offset + (pBlock % self.blocks_per_bank)) \
+ ((vpn % self.pages_per_sublk) / self.banks_total)
return ce, page
def read_single_page(self, vpn, key=None, lpn=None):
ce, pPage = self.virtual_page_number_to_physical(vpn)
#print "VFL read_single_page %d => %d, %d" % (vpn,ce,pPage)
return self.nand.readPage(ce, pPage, key, lpn)

View File

@ -0,0 +1,357 @@
from array import array
from construct.core import Struct, Union
from construct.macros import *
from progressbar import ProgressBar
from structs import *
import struct
#https://github.com/iDroid-Project/openiBoot/blob/master/openiboot/ftl-yaftl/yaftl.c
YAFTL_CXT = Struct("YAFTL_CXT",
String("version", 4),
ULInt32("unknCalculatedValue0"),
ULInt32("totalPages"),
ULInt32("latestUserBlock"),
ULInt32("cxt_unkn0_usn"),
ULInt32("latestIndexBlock"),
ULInt32("maxIndexUsn"),
ULInt32("blockStatsField4"),
ULInt32("blockStatsField10"),
ULInt32("numAllocatedBlocks"),
ULInt32("numIAllocatedBlocks"),
ULInt32("unk184_0xA"),
Array(10, ULInt32("cxt_unkn1")),
ULInt32("field_58"),
ULInt16("tocArrayLength"),
ULInt16("tocPagesPerBlock"),
ULInt16("tocEntriesPerPage"),
ULInt16("unkn_0x2A"),
ULInt16("userPagesPerBlock"),
ULInt16("unk64"),
Array(11, ULInt32("cxt_unkn2")),
ULInt8("unk188_0x63"),
)
TOCStruct = Struct("TOCStruct",
ULInt32("indexPage"),
ULInt16("cacheNum"),
ULInt16("TOCUnkMember2"),
)
BlockStats = Struct("BlockStats",
ULInt32("numAllocated"),
ULInt32("field_4"),
ULInt32("numValidDPages"),
ULInt32("numIAllocated"),
ULInt32("field_10"),
ULInt32("numValidIPages"),
ULInt32("numFree"),
ULInt32("field_1C"),
)
class YAFTL(object):
def __init__(self, vfl, usn=0):
self.vfl = vfl
self.lpnToVpn = None
bytesPerPage = vfl.nand.pageSize
numBlocks = vfl.context.usable_blocks_per_bank
self.blankPage = bytesPerPage * "\x00"
self.numBlocks = numBlocks
self.tocPagesPerBlock = vfl.pages_per_sublk * 4 / bytesPerPage
if vfl.pages_per_sublk * 4 % bytesPerPage:
self.tocPagesPerBlock += 1
self.tocEntriesPerPage = bytesPerPage / 4
self.tocArrayLength = CEIL_DIVIDE(vfl.pages_per_sublk * numBlocks * 4, bytesPerPage)
self.nPagesTocPageIndices = CEIL_DIVIDE(self.tocArrayLength * 4, bytesPerPage)
self.nPagesBlockStatuses = CEIL_DIVIDE(numBlocks * 1, bytesPerPage)
self.nPagesBlockReadCounts = CEIL_DIVIDE(numBlocks * 2, bytesPerPage)
self.nPagesBlockEraseCounts = CEIL_DIVIDE(numBlocks * 4, bytesPerPage)
self.nPagesBlockValidPagesDNumbers = self.nPagesBlockReadCounts
self.nPagesBlockValidPagesINumbers = self.nPagesBlockReadCounts
self.ctrlBlockPageOffset = self.nPagesTocPageIndices \
+ self.nPagesBlockStatuses \
+ self.nPagesBlockReadCounts \
+ self.nPagesBlockEraseCounts \
+ self.nPagesBlockValidPagesDNumbers \
+ self.nPagesBlockValidPagesINumbers \
+ 2 * self.tocPagesPerBlock \
+ 2
self.totalPages = (self.numBlocks - 8) * (self.vfl.pages_per_sublk - self.tocPagesPerBlock)# - unknCalculatedValue0
self.userPagesPerBlock = self.vfl.pages_per_sublk - self.tocPagesPerBlock
maxUsn = 0
ftlCtrlBlock = -1
for b in self.vfl.VFL_get_FTLCtrlBlock():
s,d = self.YAFTL_readPage(b * self.vfl.pages_per_sublk)
if not d:
continue
if usn and s.usn > usn:
break
if s.usn > maxUsn:
maxUsn = s.usn
ftlCtrlBlock = b
if ftlCtrlBlock == -1 or not maxUsn:
print "ftlCtrlBlock not found, restore needed"
self.YAFTL_restore()
return
i = 0
maxUsn = 0
while i < self.vfl.pages_per_sublk - self.ctrlBlockPageOffset:
s,d = self.YAFTL_readPage(ftlCtrlBlock*self.vfl.pages_per_sublk + i + self.ctrlBlockPageOffset)
if not d:
if self.YAFTL_readCxtInfo(ftlCtrlBlock*self.vfl.pages_per_sublk + i):
return
print "YaFTL_readCxtInfo FAIL, restore needed maxUsn=%d" % maxUsn
self.YAFTL_restore()
return
if s and s.usn > maxUsn:
maxUsn = s.usn
i += self.ctrlBlockPageOffset + 1
print "YaFTL open fail"
self.YAFTL_restore()
def readBTOCPages(self, block, maxVal):
data = ""
for i in xrange(self.tocPagesPerBlock):
s,d = self.YAFTL_readPage((block+1) * self.vfl.pages_per_sublk - self.tocPagesPerBlock + i)
if not s:
return None
data += d
btoc = array("I",data)
for i in xrange(len(btoc)):
if btoc[i] > maxVal:
btoc[i] = 0xFFFFFFFF
return btoc
def YAFTL_restore(self):
self.lpnToVpn = self.vfl.nand.loadCachedData("yaftlrestore")
if self.lpnToVpn:
print "Found cached FTL restore information"
return
userBlocks = {}
indexBlocks = {}
print "FTL restore in progress"
pbar = ProgressBar(self.numBlocks)
pbar.start()
for b in xrange(0, self.numBlocks):
pbar.update(b)
#read fist page in block, if empty then block is empty
s,d = self.YAFTL_readPage(b * self.vfl.pages_per_sublk + 0)
if not s:
continue
if s.type == PAGETYPE_INDEX:
indexBlocks[s.usn] = b
elif s.type == PAGETYPE_LBN:
if userBlocks.has_key(s.usn):
print "Two blocks with same USN, something is weird"
userBlocks[s.usn] = b
elif s.type == PAGETYPE_FTL_CLEAN:
pass
pbar.finish()
lpnToVpn = {}
for usn in sorted(userBlocks.keys(), reverse=True):
b = userBlocks[usn]
btoc = self.readBTOCPages(b, self.totalPages)
if btoc:
for i in xrange(self.userPagesPerBlock-1,-1, -1):
if not lpnToVpn.has_key(btoc[i]):
lpnToVpn[btoc[i]] = b * self.vfl.pages_per_sublk + i
else:
print "BTOC not found for block %d (usn %d), scanning all pages" % (b, usn)
i = 0
for p in xrange(self.vfl.pages_per_sublk - self.tocPagesPerBlock -1, -1, -1):
s,d = self.YAFTL_readPage(b * self.vfl.pages_per_sublk + p)
if s:
i+= 1
if s and not lpnToVpn.has_key(s.lpn):
lpnToVpn[s.lpn] = b * self.vfl.pages_per_sublk + p
print "%d used pages in block" % i
self.vfl.nand.cacheData("yaftlrestore", lpnToVpn)
self.lpnToVpn = lpnToVpn
return lpnToVpn
def YAFTL_readCxtInfo(self, page):
s,d = self.YAFTL_readPage(page)
if not s or s.type != PAGETYPE_FTL_CLEAN:
return False
ctx = YAFTL_CXT.parse(d)
ctx.spareUsn = s.usn
if ctx.version != "CX01":
print "Wrong FTL version %s" % ctx.version
return False
self.usn = s.usn
pageToRead = page + 1;
userTOCBuffer = self.YAFTL_read_n_Page(pageToRead, self.tocPagesPerBlock)
if not userTOCBuffer:
raise(Exception("userTOCBuffer"))
pageToRead += self.tocPagesPerBlock
indexTOCBuffer = self.YAFTL_read_n_Page(pageToRead, self.tocPagesPerBlock)
pageToRead += self.tocPagesPerBlock + 1
tocArrayIndexPages = self.YAFTL_read_n_Page(pageToRead, self.nPagesTocPageIndices)
self.tocArrayIndexPages = array("I", tocArrayIndexPages)
assert self.tocArrayIndexPages.itemsize == 4
self.indexCache = {}
pageToRead += self.nPagesTocPageIndices
if False: #we don't care, we just want to read
blockStatuses = self.YAFTL_read_n_Page(pageToRead, self.nPagesBlockStatuses)
pageToRead += self.nPagesBlockStatuses
blockReadCounts = self.YAFTL_read_n_Page(pageToRead, self.nPagesBlockReadCounts)
pageToRead += self.nPagesBlockReadCounts
blockEraseCounts = self.YAFTL_read_n_Page(pageToRead, self.nPagesBlockEraseCounts)
pageToRead += self.nPagesBlockEraseCounts
validPagesINo = self.YAFTL_read_n_Page(pageToRead, self.nPagesBlockValidPagesINumbers)
pageToRead += self.nPagesBlockValidPagesINumbers
validPagesDNo = self.YAFTL_read_n_Page(pageToRead, self.nPagesBlockValidPagesDNumbers)
print "YaFTL context OK, version=%s maxIndexUsn=%d context usn=%d" % (ctx.version, ctx.maxIndexUsn, self.usn)
return True
def YAFTL_read_n_Page(self, page, n, failIfBlank=False):
r = ""
for i in xrange(0, n):
s,d = self.YAFTL_readPage(page +i)
if not d:
if failIfBlank:
return
return r
r += d
return r
def YAFTL_readPage(self, page, key=META_KEY, lpn=None):
return self.vfl.read_single_page(page, key, lpn)
def build_lpn_to_vpn(self):
lpnToVpn = {}
for p in xrange(self.totalPages):
x = self.translateLPNtoVPN(p)
if x != 0xFFFFFFFF:
lpnToVpn[p] = x
self.vfl.nand.cacheData("currentftl", lpnToVpn)
return lpnToVpn
def translateLPNtoVPN(self, lpn):
if self.lpnToVpn:
return self.lpnToVpn.get(lpn, 0xFFFFFFFF)
tocPageNum = (lpn) / self.tocEntriesPerPage
indexPage = self.tocArrayIndexPages[tocPageNum]
if indexPage == 0xffffffff:
return 0xffffffff
#print "indexPage %x" % indexPage
if self.indexCache.has_key(indexPage):
tocPageBuffer = self.indexCache[indexPage]
else:
s,tocPageBuffer = self.YAFTL_readPage(indexPage)
if not tocPageBuffer:
print "tocPageBuffer fail"
return 0xffffffff
assert s.type == PAGETYPE_INDEX
tocPageBuffer = array("I", tocPageBuffer)
self.indexCache[indexPage] = tocPageBuffer
tocEntry = tocPageBuffer[lpn % self.tocEntriesPerPage]
return tocEntry
def readLPN(self, lpn, key=None):#, nPages):
vpn = self.translateLPNtoVPN(lpn)
if vpn == 0xffffffff:
return self.blankPage
#print "tocEntry %d" % tocEntry
#print "FTL %d => %d" % (lpn, vpn)
s,d = self.YAFTL_readPage(vpn, key, lpn)
if d == None:
return self.blankPage
if s.lpn != lpn:
raise Exception("YAFTL translation FAIL spare lpn=%d vs expected %d" % (s.lpn, lpn))
return d
def YAFTL_lookup1(self):
hax = self.vfl.nand.loadCachedData("YAFTL_lookup1")
if hax:
print "Found cached FTL lookup table"
return hax
userBlocks = {}
indexBlocks = {}
print "Building FTL lookup table v1"
pbar = ProgressBar(self.numBlocks)
pbar.start()
for b in xrange(0, self.numBlocks):
pbar.update(b)
#read fist page in block, if empty then block is empty
s,d = self.YAFTL_readPage(b * self.vfl.pages_per_sublk + 0)
if not s:
continue
if s.type == PAGETYPE_INDEX:
indexBlocks[s.usn] = b
elif s.type == PAGETYPE_LBN:
if userBlocks.has_key(s.usn):
print "Two blocks with same USN, something is weird"
userBlocks[s.usn] = b
elif s.type == PAGETYPE_FTL_CLEAN:
pass#print b, "ftl block"
pbar.finish()
lpnToVpn = {}
for usn in sorted(userBlocks.keys(), reverse=False):
b = userBlocks[usn]
btoc = self.readBTOCPages(b, self.totalPages)
#print usn, b
if btoc:
for i in xrange(self.userPagesPerBlock-1,-1, -1):
lpnToVpn.setdefault(btoc[i], []).append(b * self.vfl.pages_per_sublk + i)
else:
#print "btoc not found for block %d (usn %d), scanning all pages" % (b, usn)
i = 0
usn = -1
for p in xrange(self.vfl.pages_per_sublk - self.tocPagesPerBlock -1, -1, -1):
s,d = self.YAFTL_readPage(b * self.vfl.pages_per_sublk + p)
if not s:
break
i+= 1
if usn == -1:
usn = s.usn
if usn != s.usn:
#print "Two usns in same block %d %d" % (usn, s.usn)
usn = s.usn
lpnToVpn.setdefault(s.lpn, []).append(b * self.vfl.pages_per_sublk + p)
#print "%d used pages in block" % i
#self.vfl.nand.cacheData("YAFTL_lookup1", (lpnToVpn, userBlocks))
return lpnToVpn, userBlocks
def YAFTL_hax2(self):
hax = self.vfl.nand.loadCachedData("YAFTL_hax2")
if hax:
print "Found cached FTL HAX2 information"
return hax
print "FTL hax2 in progress"
pbar = ProgressBar(self.numBlocks)
pbar.start()
lpnToVpn = {}
for b in xrange(0, self.numBlocks):
pbar.update(b)
#read fist page in block, if empty then block is empty (right?)
s,d = self.YAFTL_readPage(b * self.vfl.pages_per_sublk + 0)
if not s:
continue
if s.type == PAGETYPE_LBN:
i = 0
usn = -1
for p in xrange(0, self.vfl.pages_per_sublk - self.tocPagesPerBlock):
s,d = self.YAFTL_readPage(b * self.vfl.pages_per_sublk + p)
if not s:
break
lpnToVpn.setdefault(s.lpn, {}).setdefault(s.usn, []).append(b * self.vfl.pages_per_sublk + p)
i+= 1
pbar.finish()
self.vfl.nand.cacheData("YAFTL_hax2", lpnToVpn)
return lpnToVpn
def block_lpn_to_vpn(self, block):
res = {}
for p in xrange(0, self.vfl.pages_per_sublk - self.tocPagesPerBlock):
s,d = self.YAFTL_readPage(block * self.vfl.pages_per_sublk + p)
if not s:
break
res[s.lpn] = block * self.vfl.pages_per_sublk + p
return res

View File

@ -0,0 +1,246 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
# usbmux.py - usbmux client library for Python
#
# Copyright (C) 2009 Hector Martin "marcan" <hector@marcansoft.com>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 or version 3.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
import socket, struct, select, sys
try:
import plistlib
haveplist = True
except:
haveplist = False
class MuxError(Exception):
pass
class MuxVersionError(MuxError):
pass
class SafeStreamSocket:
def __init__(self, address, family):
self.sock = socket.socket(family, socket.SOCK_STREAM)
self.sock.connect(address)
def send(self, msg):
totalsent = 0
while totalsent < len(msg):
sent = self.sock.send(msg[totalsent:])
if sent == 0:
raise MuxError("socket connection broken")
totalsent = totalsent + sent
def recv(self, size):
msg = ''
while len(msg) < size:
chunk = self.sock.recv(size-len(msg))
if chunk == '':
raise MuxError("socket connection broken")
msg = msg + chunk
return msg
class MuxDevice(object):
def __init__(self, devid, usbprod, serial, location):
self.devid = devid
self.usbprod = usbprod
self.serial = serial
self.location = location
def __str__(self):
return "<MuxDevice: ID %d ProdID 0x%04x Serial '%s' Location 0x%x>"%(self.devid, self.usbprod, self.serial, self.location)
class BinaryProtocol(object):
TYPE_RESULT = 1
TYPE_CONNECT = 2
TYPE_LISTEN = 3
TYPE_DEVICE_ADD = 4
TYPE_DEVICE_REMOVE = 5
VERSION = 0
def __init__(self, socket):
self.socket = socket
self.connected = False
def _pack(self, req, payload):
if req == self.TYPE_CONNECT:
return struct.pack("IH", payload['DeviceID'], payload['PortNumber']) + "\x00\x00"
elif req == self.TYPE_LISTEN:
return ""
else:
raise ValueError("Invalid outgoing request type %d"%req)
def _unpack(self, resp, payload):
if resp == self.TYPE_RESULT:
return {'Number':struct.unpack("I", payload)[0]}
elif resp == self.TYPE_DEVICE_ADD:
devid, usbpid, serial, pad, location = struct.unpack("IH256sHI", payload)
serial = serial.split("\0")[0]
return {'DeviceID': devid, 'Properties': {'LocationID': location, 'SerialNumber': serial, 'ProductID': usbpid}}
elif resp == self.TYPE_DEVICE_REMOVE:
devid = struct.unpack("I", payload)[0]
return {'DeviceID': devid}
else:
raise MuxError("Invalid incoming request type %d"%req)
def sendpacket(self, req, tag, payload={}):
payload = self._pack(req, payload)
if self.connected:
raise MuxError("Mux is connected, cannot issue control packets")
length = 16 + len(payload)
data = struct.pack("IIII", length, self.VERSION, req, tag) + payload
self.socket.send(data)
def getpacket(self):
if self.connected:
raise MuxError("Mux is connected, cannot issue control packets")
dlen = self.socket.recv(4)
dlen = struct.unpack("I", dlen)[0]
body = self.socket.recv(dlen - 4)
version, resp, tag = struct.unpack("III",body[:0xc])
if version != self.VERSION:
raise MuxVersionError("Version mismatch: expected %d, got %d"%(self.VERSION,version))
payload = self._unpack(resp, body[0xc:])
return (resp, tag, payload)
class PlistProtocol(BinaryProtocol):
TYPE_RESULT = "Result"
TYPE_CONNECT = "Connect"
TYPE_LISTEN = "Listen"
TYPE_DEVICE_ADD = "Attached"
TYPE_DEVICE_REMOVE = "Detached" #???
TYPE_PLIST = 8
VERSION = 1
def __init__(self, socket):
if not haveplist:
raise Exception("You need the plistlib module")
BinaryProtocol.__init__(self, socket)
def _pack(self, req, payload):
return payload
def _unpack(self, resp, payload):
return payload
def sendpacket(self, req, tag, payload={}):
payload['ClientVersionString'] = 'usbmux.py by marcan'
if isinstance(req, int):
req = [self.TYPE_CONNECT, self.TYPE_LISTEN][req-2]
payload['MessageType'] = req
payload['ProgName'] = 'tcprelay'
BinaryProtocol.sendpacket(self, self.TYPE_PLIST, tag, plistlib.writePlistToString(payload))
def getpacket(self):
resp, tag, payload = BinaryProtocol.getpacket(self)
if resp != self.TYPE_PLIST:
raise MuxError("Received non-plist type %d"%resp)
payload = plistlib.readPlistFromString(payload)
return payload['MessageType'], tag, payload
class MuxConnection(object):
def __init__(self, socketpath, protoclass):
self.socketpath = socketpath
if sys.platform in ['win32', 'cygwin']:
family = socket.AF_INET
address = ('127.0.0.1', 27015)
else:
family = socket.AF_UNIX
address = self.socketpath
self.socket = SafeStreamSocket(address, family)
self.proto = protoclass(self.socket)
self.pkttag = 1
self.devices = []
def _getreply(self):
while True:
resp, tag, data = self.proto.getpacket()
if resp == self.proto.TYPE_RESULT:
return tag, data
else:
raise MuxError("Invalid packet type received: %d"%resp)
def _processpacket(self):
resp, tag, data = self.proto.getpacket()
if resp == self.proto.TYPE_DEVICE_ADD:
self.devices.append(MuxDevice(data['DeviceID'], data['Properties']['ProductID'], data['Properties']['SerialNumber'], data['Properties']['LocationID']))
elif resp == self.proto.TYPE_DEVICE_REMOVE:
for dev in self.devices:
if dev.devid == data['DeviceID']:
self.devices.remove(dev)
elif resp == self.proto.TYPE_RESULT:
raise MuxError("Unexpected result: %d"%resp)
else:
raise MuxError("Invalid packet type received: %d"%resp)
def _exchange(self, req, payload={}):
mytag = self.pkttag
self.pkttag += 1
self.proto.sendpacket(req, mytag, payload)
recvtag, data = self._getreply()
if recvtag != mytag:
raise MuxError("Reply tag mismatch: expected %d, got %d"%(mytag, recvtag))
return data['Number']
def listen(self):
ret = self._exchange(self.proto.TYPE_LISTEN)
if ret != 0:
raise MuxError("Listen failed: error %d"%ret)
def process(self, timeout=None):
if self.proto.connected:
raise MuxError("Socket is connected, cannot process listener events")
rlo, wlo, xlo = select.select([self.socket.sock], [], [self.socket.sock], timeout)
if xlo:
self.socket.sock.close()
raise MuxError("Exception in listener socket")
if rlo:
self._processpacket()
def connect(self, device, port):
ret = self._exchange(self.proto.TYPE_CONNECT, {'DeviceID':device.devid, 'PortNumber':((port<<8) & 0xFF00) | (port>>8)})
if ret != 0:
raise MuxError("Connect failed: error %d"%ret)
self.proto.connected = True
return self.socket.sock
def close(self):
self.socket.sock.close()
class USBMux(object):
def __init__(self, socketpath=None):
if socketpath is None:
if sys.platform == 'darwin':
socketpath = "/var/run/usbmuxd"
else:
socketpath = "/var/run/usbmuxd"
self.socketpath = socketpath
self.listener = MuxConnection(socketpath, BinaryProtocol)
try:
self.listener.listen()
self.version = 0
self.protoclass = BinaryProtocol
except MuxVersionError:
self.listener = MuxConnection(socketpath, PlistProtocol)
self.listener.listen()
self.protoclass = PlistProtocol
self.version = 1
self.devices = self.listener.devices
def process(self, timeout=None):
self.listener.process(timeout)
def connect(self, device, port):
connector = MuxConnection(self.socketpath, self.protoclass)
return connector.connect(device, port)
if __name__ == "__main__":
mux = USBMux()
print "Waiting for devices..."
if not mux.devices:
mux.process(0.1)
while True:
print "Devices:"
for dev in mux.devices:
print dev
mux.process()

View File

@ -0,0 +1,123 @@
import glob
import plistlib
import os
from bplist import BPlistReader
import cPickle
import gzip
def read_file(filename):
f = open(filename, "rb")
data = f.read()
f.close()
return data
def write_file(filename,data):
f = open(filename, "wb")
f.write(data)
f.close()
def makedirs(dirs):
try:
os.makedirs(dirs)
except:
pass
def getHomePath(foldername, filename):
home = os.path.expanduser('~')
folderpath = os.path.join(home, foldername)
if not os.path.exists(folderpath):
makedirs(folderpath)
return os.path.join(folderpath, filename)
def readHomeFile(foldername, filename):
path = getHomePath(foldername, filename)
if not os.path.exists(path):
return None
return read_file(path)
#return path to HOME+foldername+filename
def writeHomeFile(foldername, filename, data):
filepath = getHomePath(foldername, filename)
write_file(filepath, data)
return filepath
def readPlist(filename):
f = open(filename,"rb")
d = f.read(16)
f.close()
if d.startswith("bplist"):
return BPlistReader.plistWithFile(filename)
else:
return plistlib.readPlist(filename)
def parsePlist(s):
if s.startswith("bplist"):
return BPlistReader.plistWithString(s)
else:
return plistlib.readPlistFromString(s)
#http://stackoverflow.com/questions/1094841/reusable-library-to-get-human-readable-version-of-file-size
def sizeof_fmt(num):
for x in ['bytes','KB','MB','GB','TB']:
if num < 1024.0:
return "%d%s" % (num, x)
num /= 1024.0
#http://www.5dollarwhitebox.org/drupal/node/84
def convert_bytes(bytes):
bytes = float(bytes)
if bytes >= 1099511627776:
terabytes = bytes / 1099511627776
size = '%.2fT' % terabytes
elif bytes >= 1073741824:
gigabytes = bytes / 1073741824
size = '%.2fG' % gigabytes
elif bytes >= 1048576:
megabytes = bytes / 1048576
size = '%.2fM' % megabytes
elif bytes >= 1024:
kilobytes = bytes / 1024
size = '%.2fK' % kilobytes
else:
size = '%.2fb' % bytes
return size
def xor_strings(a,b):
r=""
for i in xrange(len(a)):
r+= chr(ord(a[i])^ord(b[i]))
return r
hex = lambda data: " ".join("%02X" % ord(i) for i in data)
ascii = lambda data: "".join(c if 31 < ord(c) < 127 else "." for c in data)
def hexdump(d):
for i in xrange(0,len(d),16):
data = d[i:i+16]
print "%08X | %s | %s" % (i, hex(data).ljust(47), ascii(data))
def search_plist(directory, matchDict):
for p in map(os.path.normpath, glob.glob(directory + "/*.plist")):
try:
d = plistlib.readPlist(p)
ok = True
for k,v in matchDict.items():
if d.get(k) != v:
ok = False
break
if ok:
print "Using plist file %s" % p
return d
except:
continue
def save_pickle(filename,data):
f = gzip.open(filename,"wb")
cPickle.dump(data, f, cPickle.HIGHEST_PROTOCOL)
f.close()
def load_pickle(filename):
f = gzip.open(filename,"rb")
data = cPickle.load(f)
f.close()
return data

View File

@ -0,0 +1,29 @@
def print_table(title, headers, rows):
widths = []
for i in xrange(len(headers)):
z = map(len, [str(row[i]) for row in rows])
z.append(len(headers[i]))
widths.append(max(z))
width = sum(widths) + len(headers) + 1
print "-"* width
print "|" + title.center(width-2) + "|"
print "-"* width
hline = "|"
for i in xrange(len(headers)):
hline += headers[i].ljust(widths[i]) + "|"
print hline
print "-"* width
for row in rows:
line = "|"
for i in xrange(len(row)):
line += str(row[i]).ljust(widths[i]) + "|"
print line
if len(rows) == 0:
print "|" + "No entries".center(width-2) + "|"
print "-"* width
print ""

Some files were not shown because too many files have changed in this diff Show More