mailinabox/management/whats_next.py

297 lines
12 KiB
Python
Executable File

#!/usr/bin/python3
#
# Checks that the upstream DNS has been set correctly and that
# SSL certificates have been signed, etc., and if not tells the user
# what to do next.
__ALL__ = ['check_certificate']
import os, os.path, re, subprocess
import dns.reversename, dns.resolver
from dns_update import get_dns_zones
from web_update import get_web_domains, get_domain_ssl_files
from mailconfig import get_mail_domains, get_mail_aliases
from utils import shell, sort_domains
def run_checks(env):
run_system_checks(env)
run_domain_checks(env)
def run_system_checks(env):
print("System")
print("======")
# Check that SSH login with password is disabled.
sshd = open("/etc/ssh/sshd_config").read()
if re.search("\nPasswordAuthentication\s+yes", sshd) \
or not re.search("\nPasswordAuthentication\s+no", sshd):
print_error("""The SSH server on this machine permits password-based login. A more secure
way to log in is using a public key. Add your SSH public key to $HOME/.ssh/authorized_keys, check
that you can log in without a password, set the option 'PasswordAuthentication no' in
/etc/ssh/sshd_config, and then restart the openssh via 'sudo service ssh restart'.""")
else:
print_ok("SSH disallows password-based login.")
print()
def run_domain_checks(env):
# Get the list of domains we handle mail for.
mail_domains = get_mail_domains(env)
# Get the list of domains we serve DNS zones for (i.e. does not include subdomains).
dns_zonefiles = dict(get_dns_zones(env))
dns_domains = set(dns_zonefiles)
# Get the list of domains we serve HTTPS for.
web_domains = set(get_web_domains(env))
# Check the domains.
for domain in sort_domains(mail_domains | dns_domains | web_domains, env):
print(domain)
print("=" * len(domain))
if domain == env["PRIMARY_HOSTNAME"]:
check_primary_hostname_dns(domain, env)
if domain in dns_domains:
check_dns_zone(domain, env, dns_zonefiles)
if domain in mail_domains:
check_mail_domain(domain, env)
if domain == env["PRIMARY_HOSTNAME"] or domain in web_domains:
# We need a SSL certificate for PRIMARY_HOSTNAME because that's where the
# user will log in with IMAP or webmail. Any other domain we serve a
# website for also needs a signed certificate.
check_ssl_cert(domain, env)
print()
def check_primary_hostname_dns(domain, env):
# Check that the ns1/ns2 hostnames resolve to A records. This information probably
# comes from the TLD since the information is set at the registrar.
ip = query_dns("ns1." + domain, "A") + '/' + query_dns("ns2." + domain, "A")
if ip == env['PUBLIC_IP'] + '/' + env['PUBLIC_IP']:
print_ok("Nameserver IPs are correct at registrar. [ns1/ns2.%s => %s]" % (env['PRIMARY_HOSTNAME'], env['PUBLIC_IP']))
else:
print_error("""Nameserver IP addresses are incorrect. The ns1.%s and ns2.%s nameservers must be configured at your domain name
registrar as having the IP address %s. They currently report addresses of %s. It may take several hours for
public DNS to update after a change."""
% (env['PRIMARY_HOSTNAME'], env['PRIMARY_HOSTNAME'], env['PUBLIC_IP'], ip))
# Check that PRIMARY_HOSTNAME resolves to PUBLIC_IP in public DNS.
ip = query_dns(domain, "A")
if ip == env['PUBLIC_IP']:
print_ok("Domain resolves to box's IP address. [%s => %s]" % (env['PRIMARY_HOSTNAME'], env['PUBLIC_IP']))
else:
print_error("""This domain must resolve to your box's IP address (%s) in public DNS but it currently resolves
to %s. It may take several hours for public DNS to update after a change. This problem may result from other
issues listed here."""
% (env['PUBLIC_IP'], ip))
# Check reverse DNS on the PRIMARY_HOSTNAME. Note that it might not be
# a DNS zone if it is a subdomain of another domain we have a zone for.
ipaddr_rev = dns.reversename.from_address(env['PUBLIC_IP'])
existing_rdns = query_dns(ipaddr_rev, "PTR")
if existing_rdns == domain:
print_ok("Reverse DNS is set correctly at ISP. [%s => %s]" % (env['PUBLIC_IP'], env['PRIMARY_HOSTNAME']))
else:
print_error("""Your box's reverse DNS is currently %s, but it should be %s. Your ISP or cloud provider will have instructions
on setting up reverse DNS for your box at %s.""" % (existing_rdns, domain, env['PUBLIC_IP']) )
# Check that the hostmaster@ email address exists.
check_alias_exists("hostmaster@" + domain, env)
def check_alias_exists(alias, env):
mail_alises = dict(get_mail_aliases(env))
if alias in mail_alises:
print_ok("%s exists as a mail alias [=> %s]" % (alias, mail_alises[alias]))
else:
print_error("""You must add a mail alias for %s and direct email to you or another administrator.""" % alias)
def check_dns_zone(domain, env, dns_zonefiles):
# We provide a DNS zone for the domain. It should have NS records set up
# at the domain name's registrar pointing to this box.
existing_ns = query_dns(domain, "NS")
correct_ns = "ns1.BOX; ns2.BOX".replace("BOX", env['PRIMARY_HOSTNAME'])
if existing_ns == correct_ns:
print_ok("Nameservers are set correctly at registrar. [%s]" % correct_ns)
else:
print_error("""The nameservers set on this domain are incorrect. They are currently %s. Use your domain name registar's
control panel to set the nameservers to %s."""
% (existing_ns, correct_ns) )
# See if the domain's A record resolves to our PUBLIC_IP. This is already checked
# for PRIMARY_HOSTNAME, for which it is required. For other domains it is just nice
# to have if we want web.
if domain != env['PRIMARY_HOSTNAME']:
ip = query_dns(domain, "A")
if ip == env['PUBLIC_IP']:
print_ok("Domain resolves to this box's IP address. [%s => %s]" % (domain, env['PUBLIC_IP']))
else:
print_error("""This domain should resolve to your box's IP address (%s) if you would like the box to serve
webmail or a website on this domain. The domain currently resolves to %s in public DNS. It may take several hours for
public DNS to update after a change. This problem may result from other issues listed here.""" % (env['PUBLIC_IP'], ip))
# See if the domain has a DS record set.
ds = query_dns(domain, "DS", nxdomain=None)
ds_correct = open('/etc/nsd/zones/' + dns_zonefiles[domain] + '.ds').read().strip()
ds_expected = re.sub(r"\S+\.\s+3600\s+IN\s+DS\s*", "", ds_correct)
if ds == ds_expected:
print_ok("DNS 'DS' record is set correctly at registrar.")
elif ds == None:
print_error("""This domain's DNS DS record is not set. The DS record is optional. The DS record activates DNSSEC.
To set a DS record, you must follow the instructions provided by your domain name registrar and provide to them this information:""")
print("")
print(" " + ds_correct)
print("")
else:
print_error("""This domain's DNS DS record is incorrect. The chain of trust is broken between the public DNS system
and this machine's DNS server. It may take several hours for public DNS to update after a change. If you did not recently
make a change, you must resolve this immediately by following the instructions provided by your domain name registrar and
provide to them this information:""")
print("")
print(" " + ds_correct)
print("")
def check_mail_domain(domain, env):
# Check the MX record.
mx = query_dns(domain, "MX")
expected_mx = "10 " + env['PRIMARY_HOSTNAME']
if mx == expected_mx:
print_ok("Domain's email is directed to this domain. [%s => %s]" % (domain, mx))
else:
print_error("""This domain's DNS MX record is incorrect. It is currently set to '%s' but should be '%s'. Mail will not
be delivered to this box. It may take several hours for public DNS to update after a change. This problem may result from
other issues listed here.""" % (mx, expected_mx))
# Check that the postmaster@ email address exists.
check_alias_exists("postmaster@" + domain, env)
def query_dns(qname, rtype, nxdomain='[Not Set]'):
resolver = dns.resolver.get_default_resolver()
try:
response = dns.resolver.query(qname, rtype)
except (dns.resolver.NoNameservers, dns.resolver.NXDOMAIN, dns.resolver.NoAnswer):
# Host did not have an answer for this query; not sure what the
# difference is between the two exceptions.
return nxdomain
# There may be multiple answers; concatenate the response. Remove trailing
# periods from responses since that's how qnames are encoded in DNS but is
# confusing for us.
return "; ".join(str(r).rstrip('.') for r in response)
def check_ssl_cert(domain, env):
# Check that SSL certificate is signed.
# Skip the check if the A record is not pointed here.
if query_dns(domain, "A") != env['PUBLIC_IP']: return
# Where is the SSL stored?
ssl_key, ssl_certificate, ssl_csr_path = get_domain_ssl_files(domain, env)
if not os.path.exists(ssl_certificate):
print_error("The SSL certificate file for this domain is missing.")
return
# Check that the certificate is good.
cert_status = check_certificate(ssl_certificate)
if cert_status == "SELF-SIGNED":
fingerprint = shell('check_output', [
"openssl",
"x509",
"-in", ssl_certificate,
"-noout",
"-fingerprint"
])
fingerprint = re.sub(".*Fingerprint=", "", fingerprint).strip()
print_error("""The SSL certificate for this domain is currently self-signed. That's OK if you are willing to confirm security
exceptions when you check your mail (either via IMAP or webmail), but if you are serving a website on this domain then users
will not be able to access the site. When confirming security exceptions, check that the certificate fingerprint matches:""")
print()
print(" " + fingerprint)
print()
print_block("""You can purchase a signed certificate from many places. You will need to provide this Certificate Signing Request (CSR)
to whoever you purchase the SSL certificate from:""")
print()
print(open(ssl_csr_path).read().strip())
print()
print_block("""When you purchase an SSL certificate you will receive a certificate in PEM format and possibly a file containing intermediate certificates in PEM format.
If you receive intermediate certificates, use a text editor and paste your certificate on top and then the intermediate certificates
below it. Save the file and place it onto this machine at %s.""" % ssl_certificate)
elif cert_status == "OK":
print_ok("SSL certificate is signed.")
else:
print_error("The SSL certificate has a problem:")
print("")
print(cert_status)
print("")
def check_certificate(ssl_certificate):
# Use openssl verify to check the status of a certificate.
# In order to verify with openssl, we need to split out any
# intermediary certificates in the chain (if any) from our
# certificate (at the top). They need to be passed separately.
cert = open(ssl_certificate).read()
m = re.match(r'(-*BEGIN CERTIFICATE-*.*?-*END CERTIFICATE-*)(.*)', cert, re.S)
if m == None:
return "The certificate file is an invalid PEM certificate."
mycert, chaincerts = m.groups()
# This command returns a non-zero exit status in most cases, so trap errors.
retcode, verifyoutput = shell('check_output', [
"openssl",
"verify", "-verbose",
"-purpose", "sslserver", "-policy_check",]
+ ([] if chaincerts.strip() == "" else ["-untrusted", "/dev/stdin"])
+ [ssl_certificate],
input=chaincerts.encode('ascii'),
trap=True)
if "self signed" in verifyoutput:
# Certificate is self-signed.
return "SELF-SIGNED"
elif retcode == 0:
# Certificate is OK.
return "OK"
else:
return verifyoutput.strip()
def print_ok(message):
print_block(message, first_line="")
def print_error(message):
print_block(message, first_line="")
def print_block(message, first_line=" "):
print(first_line, end='')
message = re.sub("\n\s*", " ", message)
words = re.split("(\s+)", message)
linelen = 0
for w in words:
if linelen + len(w) > 75:
print()
print(" ", end="")
linelen = 0
if linelen == 0 and w.strip() == "": continue
print(w, end="")
linelen += len(w)
if linelen > 0:
print()
if __name__ == "__main__":
from utils import load_environment
run_checks(load_environment())