uhub/src/util/ipcalc.c
2009-07-26 03:56:55 +02:00

492 lines
12 KiB
C

/*
* uhub - A tiny ADC p2p connection hub
* Copyright (C) 2007-2009, Jan Vidar Krey
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "uhub.h"
int ip_is_valid_ipv4(const char* address)
{
int i = 0; /* address index */
int o = 0; /* octet number */
int n = 0; /* numbers after each dot */
int d = 0; /* dots */
if (!address || strlen(address) > 15 || strlen(address) < 7)
return 0;
for (; i < strlen(address); i++)
{
if (is_num(address[i]))
{
n++;
o *= 10;
o += (address[i] - '0');
}
else if (address[i] == '.')
{
if (n == 0 || n > 3 || o > 255) return 0;
n = 0;
o = 0;
d++;
}
else
{
return 0;
}
}
if (n == 0 || n > 3 || o > 255 || d != 3) return 0;
return 1;
}
int ip_is_valid_ipv6(const char* address)
{
unsigned char buf[16];
int ret = net_string_to_address(AF_INET6, address, buf);
if (ret <= 0) return 0;
return 1;
}
int ip_convert_to_binary(const char* taddr, struct ip_addr_encap* raw)
{
if (ip_is_valid_ipv6(taddr))
{
if (net_string_to_address(AF_INET6, taddr, &raw->internal_ip_data.in6) <= 0)
{
return -1;
}
raw->af = AF_INET6;
return AF_INET6;
}
else if (ip_is_valid_ipv4(taddr))
{
if (net_string_to_address(AF_INET, taddr, &raw->internal_ip_data.in) <= 0)
{
return -1;
}
raw->af = AF_INET;
return AF_INET;
}
return -1;
}
const char* ip_convert_to_string(struct ip_addr_encap* raw)
{
static char address[INET6_ADDRSTRLEN+1];
memset(address, 0, INET6_ADDRSTRLEN);
net_address_to_string(raw->af, (void*) &raw->internal_ip_data, address, INET6_ADDRSTRLEN+1);
if (strncmp(address, "::ffff:", 7) == 0) /* IPv6 mapped IPv4 address. */
{
return &address[7];
}
return address;
}
int ip_convert_address(const char* text_address, int port, struct sockaddr* addr, socklen_t* addr_len)
{
struct sockaddr_in6 addr6;
struct sockaddr_in addr4;
size_t sockaddr_size;
const char* taddr = 0;
int ipv6sup = net_is_ipv6_supported();
if (strcmp(text_address, "any") == 0)
{
if (ipv6sup)
{
taddr = "::";
}
else
{
taddr = "0.0.0.0";
}
}
else if (strcmp(text_address, "loopback") == 0)
{
if (ipv6sup)
{
taddr = "::1";
}
else
{
taddr = "127.0.0.1";
}
}
else
{
taddr = text_address;
}
if (ip_is_valid_ipv6(taddr) && ipv6sup)
{
sockaddr_size = sizeof(struct sockaddr_in6);
memset(&addr6, 0, sockaddr_size);
addr6.sin6_family = AF_INET6;
addr6.sin6_port = htons(port);
if (net_string_to_address(AF_INET6, taddr, &addr6.sin6_addr) <= 0)
{
LOG_ERROR("Unable to convert socket address (ipv6)");
return 0;
}
memcpy(addr, &addr6, sockaddr_size);
*addr_len = sockaddr_size;
}
else if (ip_is_valid_ipv4(taddr))
{
sockaddr_size = sizeof(struct sockaddr_in);
memset(&addr4, 0, sockaddr_size);
addr4.sin_family = AF_INET;
addr4.sin_port = htons(port);
if (net_string_to_address(AF_INET, taddr, &addr4.sin_addr) <= 0)
{
LOG_ERROR("Unable to convert socket address (ipv4)");
return 0;
}
memcpy(addr, &addr4, sockaddr_size);
*addr_len = sockaddr_size;
}
else
{
addr = 0;
*addr_len = 0;
return -1;
}
return 0;
}
int ip_mask_create_left(int af, int bits, struct ip_addr_encap* result)
{
uint32_t mask;
int fill, remain_bits, n;
memset(result, 0, sizeof(struct ip_addr_encap));
result->af = af;
if (bits < 0) bits = 0;
if (af == AF_INET)
{
if (bits > 32) bits = 32;
mask = (0xffffffff << (32 - bits));
if (bits == 0) mask = 0;
result->internal_ip_data.in.s_addr = (((uint8_t*) &mask)[0] << 24) | (((uint8_t*) &mask)[1] << 16) | (((uint8_t*) &mask)[2] << 8) | (((uint8_t*) &mask)[3] << 0);
}
else if (af == AF_INET6)
{
if (bits > 128) bits = 128;
fill = (128-bits) / 8;
remain_bits = (128-bits) % 8;
mask = (0xff << (8 - remain_bits));
n = 0;
for (n = 0; n < fill; n++)
((uint8_t*) &result->internal_ip_data.in6)[n] = (uint8_t) 0xff;
if (fill < 16)
((uint8_t*) &result->internal_ip_data.in6)[fill] = (uint8_t) mask;
}
else
{
return -1;
}
#ifdef IP_CALC_DEBUG
char* r_str = hub_strdup(ip_convert_to_string(result));
LOG_DUMP("Created left mask: %s", r_str);
hub_free(r_str);
#endif
return 0;
}
int ip_mask_create_right(int af, int bits, struct ip_addr_encap* result)
{
uint32_t mask;
int fill, remain_bits, n, start;
uint8_t mask8;
memset(result, 0, sizeof(struct ip_addr_encap));
result->af = af;
if (bits < 0) bits = 0;
if (af == AF_INET)
{
if (bits > 32) bits = 32;
mask = (0xffffffff >> (32-bits));
if (bits == 0) mask = 0;
result->internal_ip_data.in.s_addr = (((uint8_t*) &mask)[0] << 24) | (((uint8_t*) &mask)[1] << 16) | (((uint8_t*) &mask)[2] << 8) | (((uint8_t*) &mask)[3] << 0);
}
else if (af == AF_INET6)
{
if (bits > 128) bits = 128;
fill = (128-bits) / 8;
remain_bits = (128-bits) % 8;
mask8 = (0xff >> (8 - remain_bits));
n = 0;
start = 16-fill;
for (n = 0; n < start; n++)
((uint8_t*) &result->internal_ip_data.in6)[n] = (uint8_t) 0x00;
for (n = start; n < 16; n++)
((uint8_t*) &result->internal_ip_data.in6)[n] = (uint8_t) 0xff;
if (start > 0)
((uint8_t*) &result->internal_ip_data.in6)[start-1] = (uint8_t) mask8;
}
else
{
return -1;
}
#ifdef IP_CALC_DEBUG
char* r_str = hub_strdup(ip_convert_to_string(result));
LOG_DUMP("Created right mask: %s", r_str);
hub_free(r_str);
#endif
return 0;
}
void ip_mask_apply_AND(struct ip_addr_encap* addr, struct ip_addr_encap* mask, struct ip_addr_encap* result)
{
memset(result, 0, sizeof(struct ip_addr_encap));
result->af = addr->af;
if (addr->af == AF_INET)
{
result->internal_ip_data.in.s_addr = addr->internal_ip_data.in.s_addr & mask->internal_ip_data.in.s_addr;
}
else if (addr->af == AF_INET6)
{
uint32_t A, B, C, D;
int n = 0;
int offset = 0;
for (n = 0; n < 4; n++)
{
offset = n * 4;
A = (((uint8_t*) &addr->internal_ip_data.in6)[offset+0] << 24) |
(((uint8_t*) &addr->internal_ip_data.in6)[offset+1] << 16) |
(((uint8_t*) &addr->internal_ip_data.in6)[offset+2] << 8) |
(((uint8_t*) &addr->internal_ip_data.in6)[offset+3] << 0);
B = (((uint8_t*) &mask->internal_ip_data.in6)[offset+0] << 24) |
(((uint8_t*) &mask->internal_ip_data.in6)[offset+1] << 16) |
(((uint8_t*) &mask->internal_ip_data.in6)[offset+2] << 8) |
(((uint8_t*) &mask->internal_ip_data.in6)[offset+3] << 0);
C = A & B;
D = (((uint8_t*) &C)[0] << 24) |
(((uint8_t*) &C)[1] << 16) |
(((uint8_t*) &C)[2] << 8) |
(((uint8_t*) &C)[3] << 0);
((uint32_t*) &result->internal_ip_data.in6)[n] = D;
}
}
}
void ip_mask_apply_OR(struct ip_addr_encap* addr, struct ip_addr_encap* mask, struct ip_addr_encap* result)
{
memset(result, 0, sizeof(struct ip_addr_encap));
result->af = addr->af;
if (addr->af == AF_INET)
{
result->internal_ip_data.in.s_addr = addr->internal_ip_data.in.s_addr | mask->internal_ip_data.in.s_addr;
}
else if (addr->af == AF_INET6)
{
uint32_t A, B, C, D;
int n = 0;
int offset = 0;
for (n = 0; n < 4; n++)
{
offset = n * 4;
A = (((uint8_t*) &addr->internal_ip_data.in6)[offset+0] << 24) |
(((uint8_t*) &addr->internal_ip_data.in6)[offset+1] << 16) |
(((uint8_t*) &addr->internal_ip_data.in6)[offset+2] << 8) |
(((uint8_t*) &addr->internal_ip_data.in6)[offset+3] << 0);
B = (((uint8_t*) &mask->internal_ip_data.in6)[offset+0] << 24) |
(((uint8_t*) &mask->internal_ip_data.in6)[offset+1] << 16) |
(((uint8_t*) &mask->internal_ip_data.in6)[offset+2] << 8) |
(((uint8_t*) &mask->internal_ip_data.in6)[offset+3] << 0);
C = A | B;
D = (((uint8_t*) &C)[0] << 24) |
(((uint8_t*) &C)[1] << 16) |
(((uint8_t*) &C)[2] << 8) |
(((uint8_t*) &C)[3] << 0);
((uint32_t*) &result->internal_ip_data.in6)[n] = D;
}
}
}
int ip_compare(struct ip_addr_encap* a, struct ip_addr_encap* b)
{
int ret = 0;
uint32_t A, B;
if (a->af == AF_INET)
{
A = (((uint8_t*) &a->internal_ip_data.in.s_addr)[0] << 24) |
(((uint8_t*) &a->internal_ip_data.in.s_addr)[1] << 16) |
(((uint8_t*) &a->internal_ip_data.in.s_addr)[2] << 8) |
(((uint8_t*) &a->internal_ip_data.in.s_addr)[3] << 0);
B = (((uint8_t*) &b->internal_ip_data.in.s_addr)[0] << 24) |
(((uint8_t*) &b->internal_ip_data.in.s_addr)[1] << 16) |
(((uint8_t*) &b->internal_ip_data.in.s_addr)[2] << 8) |
(((uint8_t*) &b->internal_ip_data.in.s_addr)[3] << 0);
ret = A - B;
}
else if (a->af == AF_INET6)
{
int n = 0;
int offset = 0;
for (n = 0; n < 4; n++)
{
offset = n * 4;
A = (((uint8_t*) &a->internal_ip_data.in6)[offset+0] << 24) |
(((uint8_t*) &a->internal_ip_data.in6)[offset+1] << 16) |
(((uint8_t*) &a->internal_ip_data.in6)[offset+2] << 8) |
(((uint8_t*) &a->internal_ip_data.in6)[offset+3] << 0);
B = (((uint8_t*) &b->internal_ip_data.in6)[offset+0] << 24) |
(((uint8_t*) &b->internal_ip_data.in6)[offset+1] << 16) |
(((uint8_t*) &b->internal_ip_data.in6)[offset+2] << 8) |
(((uint8_t*) &b->internal_ip_data.in6)[offset+3] << 0);
if (A == B) continue;
return A - B;
}
return 0;
}
#ifdef IP_CALC_DEBUG
char* a_str = hub_strdup(ip_convert_to_string(a));
char* b_str = hub_strdup(ip_convert_to_string(b));
LOG_DUMP("Comparing IPs '%s' AND '%s' => %d", a_str, b_str, ret);
hub_free(a_str);
hub_free(b_str);
#endif
return ret;
}
static int check_ip_mask(const char* text_addr, int bits, struct ip_range* range)
{
if (ip_is_valid_ipv4(text_addr) || ip_is_valid_ipv6(text_addr))
{
struct ip_addr_encap addr;
struct ip_addr_encap mask1;
struct ip_addr_encap mask2;
int af = ip_convert_to_binary(text_addr, &addr); /* 192.168.1.2 */
int maxbits = (af == AF_INET6 ? 128 : 32);
bits = MIN(MAX(bits, 0), maxbits);
ip_mask_create_left(af, bits, &mask1); /* 255.255.255.0 */
ip_mask_create_right(af, maxbits - bits, &mask2); /* 0.0.0.255 */
ip_mask_apply_AND(&addr, &mask1, &range->lo); /* 192.168.1.0 */
ip_mask_apply_OR(&range->lo, &mask2, &range->hi); /* 192.168.1.255 */
return 1;
}
return 0;
}
static int check_ip_range(const char* lo, const char* hi, struct ip_range* range)
{
int ret1, ret2;
if ((ip_is_valid_ipv4(lo) && ip_is_valid_ipv4(hi)) || (ip_is_valid_ipv6(lo) && ip_is_valid_ipv6(hi)))
{
ret1 = ip_convert_to_binary(lo, &range->lo);
ret2 = ip_convert_to_binary(hi, &range->hi);
if (ret1 == -1 || ret2 == -1 || ret1 != ret2)
{
return 0;
}
return 1;
}
return 0;
}
int ip_convert_address_to_range(const char* address, struct ip_range* range)
{
int ret = 0;
char* addr = 0;
if (!address || !range)
return 0;
const char* split = strrchr(address, '/');
if (split)
{
int mask = uhub_atoi(split+1);
if (mask == 0 && split[1] != '0') return 0;
addr = hub_strndup(address, split - address);
ret = check_ip_mask(addr, mask, range);
hub_free(addr);
return ret;
}
split = strrchr(address, '-');
if (split)
{
addr = hub_strndup(address, split - address);
ret = check_ip_range(addr, split+1, range);
hub_free(addr);
return ret;
}
if (ip_is_valid_ipv4(address) || ip_is_valid_ipv6(address))
{
if (ip_convert_to_binary(address, &range->lo) == -1)
return 0;
memcpy(&range->hi, &range->lo, sizeof(struct ip_addr_encap));
return 1;
}
return 0;
}
int ip_in_range(struct ip_addr_encap* addr, struct ip_range* range)
{
return (addr->af == range->lo.af && ip_compare(&range->lo, addr) <= 0 && ip_compare(addr, &range->hi) <= 0);
}